Answer to Question #268571 in Calculus for Rakesh

Question #268571



Using Weiestrass M-test, show that the following series converges uniformly.


.


3


1


,


3


1


n x ,x


n 1


3 n 










 




.





3





1





,





3





1





n x ,x





n 1





3 n 





































 

1
Expert's answer
2021-11-22T17:17:48-0500

Question is incomplete.

Let us take an example related to the given problem:

Using Weierstrass’ M-test, show that the series

Infinity

∑ x/n(n+2)^2

n=1

Converges uniformly in [0,k] where k is any given finite positive number.


Solution:

First we give a wording the Weierstrass’ M-test:

Suppose that {fn}\left\{f_n\right\} is a sequence of real- or complex-valued functions defined on a set AA , and that there is a sequence of positive numbers {Mn}\left\{M_n\right\} satisfying



n1,xA:fn(x)Mnn=1Mn<Mnconverges\forall n\ge 1,\quad \forall x\in A:\quad \left|f_n(x)\right|\le M_n\\[0.5cm] \sum\limits_{n=1}^{\infty}M_n<\infty\longrightarrow M_n\, \text{converges}

Then,


n=1fn(x)\sum\limits_{n=1}^{\infty}f_n(x)

converges absolutely and uniformly on A.

( More information: https://en.wikipedia.org/wiki/Weierstrass_M-test )

In our case,



x[0;k]:fn(x)=xn(n+2)2kn(n+2)2\forall x\in[0;k]:\quad\left|f_n(x)\right|=\left|\frac{x}{n(n+2)^2}\right|\le\frac{k}{n(n+2)^2}

Then, it remains to prove that the series


n=1kn(n+2)2converges\sum\limits_{n=1}^{\infty}\frac{k}{n(n+2)^2}\,\text{converges}

For this we use the integral test for convergence.

( More information: https://en.wikipedia.org/wiki/Integral_test_for_convergence )

In our case,



1kdxx(x+2)2=k1dxxx2(1+2/x)2==[2x=tdxx2=dt2;x=1t=2  andx=t=0]==k20(tdt4(1+t)2)=k402(t+1)1dt(1+t)2==k402(1t+11(t+1)2)dt=k4(lnt+1+1t+1)t=0t=2==k4((ln2+1+12+1)(ln0+1+10+1))==k4((ln3+13)(ln1+1))=k4(ln323)<\int_1^\infty\frac{kdx}{x(x+2)^2}=k\cdot\int_1^\infty\frac{dx}{x\cdot x^2(1+2/x)^2}=\\[0.3cm] =\left[\frac{2}{x}=t\to\frac{dx}{x^2}=\frac{dt}{-2};\,x=1\to t=2\,\,\text{and}\,x=\infty\to t=0\right]=\\[0.3cm] =k\cdot\int_2^0\left(\frac{tdt}{-4\cdot (1+t)^2}\right)=\frac{k}{4}\cdot\int_0^2\frac{(t+1)-1dt}{ (1+t)^2}=\\[0.3cm] =\frac{k}{4}\cdot\int_0^2\left(\frac{1}{t+1}-\frac{1}{(t+1)^2}\right)dt=\frac{k}{4}\cdot\left.\left(\ln|t+1|+\frac{1}{t+1}\right)\right|_{t=0}^{t=2}=\\[0.3cm] =\frac{k}{4}\cdot\left(\left(\ln|2+1|+\frac{1}{2+1}\right)-\left(\ln|0+1|+\frac{1}{0+1}\right)\right)=\\[0.3cm] =\frac{k}{4}\cdot\left(\left(\ln3+\frac{1}{3}\right)-\left(\ln|1|+1\right)\right)=\frac{k}{4}\cdot\left(\ln3-\frac{2}{3}\right)<\infty1kdxx(x+2)2=k4(ln323)k0.10799\boxed{\int_1^\infty\frac{kdx}{x(x+2)^2}=\frac{k}{4}\cdot\left(\ln3-\frac{2}{3}\right)\approx k\cdot0.10799}

Conclusion,


Sincen=1kn(n+2)2convergesn=1xn(n+2)2 uniformly converges\text{Since}\quad\sum\limits_{n=1}^{\infty}\frac{k}{n(n+2)^2}\,\text{converges}\to\\[0.3cm] \sum\limits_{n=1}^{\infty}\frac{x}{n(n+2)^2}\,\text{ uniformly converges}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment