A 1
f(x)=x−2 for x∈[2,4]
g(x)=4−(x−6)2+2 for x∈[4,8]
h(x)=x−6 for x∈[8,10]
then:
length of f(x):
L1=22+22=22
length of h(x):
L2=22+22=22
length of g(x):
L3=2πR/2=2π
total length:
L=L1+L2+L3=22+22+2π=2(π+22)
A 2
f(x)⋅g(x)=(x−2)(4−(x−6)2+2)
f(x)⋅h(x)=(x−2)(x−6)
g(x)⋅h(x)=(x−6)(4−(x−6)2+2)
λ(x)=(x−2)(4−(x−6)2+2)+(x−2)(x−6)−(x−6)(4−(x−6)2+2)
λ′(x)=4−(x−6)2+2−4−(x−6)2(x−2)(x−6)+2x−8+4−(x−6)2+2−4−(x−6)2(x−6)2=
=24−(x−6)2+2x−4−4−(x−6)2(2x−8)(x−6)
Comments