Question #268558

Problem A.1


The graph below is made of three line segments:


-1 1 2 3 4 5 6 7 8 9 10 11 12


1


2


3


4


y


x


f(x)


g(x)


h(x)


The segments correspond to the following three functions:


f(x) = x − 2, g(x) = p


4 − (x − 6)2 + 2, h(x) = x − 6


Find the total length L of the graph between x = 2 and x = 10.

1
Expert's answer
2021-11-22T17:17:11-0500

(i) Length of f(x)

Given,

f(x)=x2,for2x4f(x)=x-2, \quad for 2 \leq x \leq 4

The length would be the length of hypotenuse of right angled isosceles triangle of side length =2 units

 h2=b2+h2h2=22+22h2=8h=22\begin{aligned} &\Rightarrow h^{2}=b^{2}+h^{2} \\ &\Rightarrow h^{2}=2^{2}+2^{2} \\ &\Rightarrow h^{2}=8 \\ &\Rightarrow h=2 \sqrt{2} \end{aligned}

Length of graph contributed by f(x)=22f(x)=2 \sqrt{2}

(ii) Length of g(x)

Given,

g(x)=4(x6)2+2, for 4x8g(x)2=4(x6)2(g(x)2)2=4(x6)2(x6)2+(g(x)2)2=22\begin{aligned} &g(x)=\sqrt{4-(x-6)^{2}}+2, \quad \text { for } 4 \leq x \leq 8 \\ &\Rightarrow g(x)-2=\sqrt{4-(x-6)^{2}} \\ &\Rightarrow(g(x)-2)^{2}=4-(x-6)^{2}\\ &\Rightarrow (x-6)^{2}+(g(x)-2)^{2}=2^2 \end{aligned}

So, g(x) is a circle with centre at (6,2) and radius = 2 units

Length contributed by g(x) would be circumference of semicircle

Length contributed by g(x) = πr=2π\pi r=2\pi


(iii) Length of h(x)\mathrm{h}(\mathrm{x})

Given,

f(x)=x6,for 8x10f(x)=x-6, \quad for \ 8 \leq x \leq 10

The length would be the length of hypotenuse of right angled triangle of base = height =2 units

h2=b2+h2h2=22+22h2=8h=22\begin{aligned} &\Rightarrow h^{2}=b^{2}+h^{2} \\ &\Rightarrow h^{2}=2^{2}+2^{2} \\ &\Rightarrow h^{2}=8 \\ &\Rightarrow h=2 \sqrt{2} \end{aligned}  

Length of graph contributed by h(x)=22h(x)=2 \sqrt{2}

Total length of graph

L= length contributed by f(x)+ length contributed by g(x)+ length contributed by h(x)L=22+2π+22L=42+2π\begin{aligned} &L=\text { length contributed by } f(x)+\text { length contributed by } g(x)+\text { length contributed by } h(x) \\ &\Rightarrow L=2 \sqrt{2}+2 \pi+2 \sqrt{2} \\ &\Rightarrow L=4 \sqrt{2}+2 \pi \end{aligned}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS