The formula for calculating the sum of all natural integers from 1 to n is well-known:
Similary, we know about the formula for calculating the sum of the first n squares:
Now, we reduce one of the two multipliers of each product by one to get the following sum:
Mn = 0 · 1 + 1 · 2 + 2 · 3 + 3 · 4 + ... + (n − 1) · n
Find an explicit formula for calculating the sum Mn.
"\\displaystyle\\sum_{i=1}^ni^2=\\dfrac{n(n+1)(2n+1)}{6}"
"\\displaystyle\\sum_{i=1}^n(i-1)i=\\displaystyle\\sum_{i=1}^n(i^2-i)=\\displaystyle\\sum_{i=1}^ni^2-\\displaystyle\\sum_{i=1}^ni"
"=\\dfrac{n(n+1)(2n+1)}{6}-\\dfrac{n(n+1)}{2}"
"=\\dfrac{n(n+1)(2n+1-3)}{6}"
"=\\dfrac{(n-1)n(n+1)}{3}"
"M_n=0 \u00b7 1 + 1 \u00b7 2 + 2 \u00b7 3 + 3 \u00b7 4 + ... + (n \u2212 1) \u00b7 n"
"=\\displaystyle\\sum_{i=1}^n(i-1)i=\\dfrac{(n-1)n(n+1)}{3}"
Comments
Leave a comment