Question #268132

The formula for calculating the sum of all natural integers from 1 to n is well-known:


Similary, we know about the formula for calculating the sum of the first n squares:


Now, we reduce one of the two multipliers of each product by one to get the following sum:

Mn = 0 · 1 + 1 · 2 + 2 · 3 + 3 · 4 + ... + (n − 1) · n

Find an explicit formula for calculating the sum Mn.


1
Expert's answer
2021-11-19T00:52:26-0500
i=1ni=n(n+1)2\displaystyle\sum_{i=1}^ni=\dfrac{n(n+1)}{2}

i=1ni2=n(n+1)(2n+1)6\displaystyle\sum_{i=1}^ni^2=\dfrac{n(n+1)(2n+1)}{6}

i=1n(i1)i=i=1n(i2i)=i=1ni2i=1ni\displaystyle\sum_{i=1}^n(i-1)i=\displaystyle\sum_{i=1}^n(i^2-i)=\displaystyle\sum_{i=1}^ni^2-\displaystyle\sum_{i=1}^ni

=n(n+1)(2n+1)6n(n+1)2=\dfrac{n(n+1)(2n+1)}{6}-\dfrac{n(n+1)}{2}

=n(n+1)(2n+13)6=\dfrac{n(n+1)(2n+1-3)}{6}

=(n1)n(n+1)3=\dfrac{(n-1)n(n+1)}{3}

Mn=01+12+23+34+...+(n1)nM_n=0 · 1 + 1 · 2 + 2 · 3 + 3 · 4 + ... + (n − 1) · n

=i=1n(i1)i=(n1)n(n+1)3=\displaystyle\sum_{i=1}^n(i-1)i=\dfrac{(n-1)n(n+1)}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS