Solution:
The curve y = x 2 \ x^{2} x 2 from x = 0 and x = 1 about the y axis
We know that x = 0 to x = 1 , which is analogous from y = 0 to y = 1.
Area of the surface is
A = 2 × π ∫ a b g ( y ) 1 + ( g ′ ( y ) 2 ) d y A = 2\times \pi \int_{a}^{b} g(y)\sqrt{1+(g'(y)^{2})}dy A = 2 × π ∫ a b g ( y ) 1 + ( g ′ ( y ) 2 ) d y
g ( y ) = y g(y) = \sqrt{y} g ( y ) = y
g ′ ( y ) = 1 ( 2 × y ) g'(y) = \frac {1}{(2\times\sqrt{y})} g ′ ( y ) = ( 2 × y ) 1
A = 2 × π ∫ 0 1 y 1 + ( 1 ( 2 × y ) ) 2 d y A = 2\times \pi \int_{0}^{1} \sqrt {y} \sqrt{1+(\frac{1}{(2\times\sqrt{y})})^{2}}dy A = 2 × π ∫ 0 1 y 1 + ( ( 2 × y ) 1 ) 2 d y
⇒ A = 2 × π ∫ 0 1 y ( 1 + 1 4 y ) d y \Rightarrow A = 2\times \pi \int_{0}^{1} \sqrt{y(1+\frac{1}{4y})}dy ⇒ A = 2 × π ∫ 0 1 y ( 1 + 4 y 1 ) d y
⇒ A = 2 × π ∫ 0 1 y + ( 1 4 ) d y \Rightarrow A = 2\times \pi \int_{0}^{1} \sqrt{y+(\frac{1}{4})}dy ⇒ A = 2 × π ∫ 0 1 y + ( 4 1 ) d y
Let,
u = y + 1 4 u = y + \frac {1}{4} u = y + 4 1
⇒ d u = d y \Rightarrow du = dy ⇒ d u = d y
y = 0 , u = 1 4 y = 0 , u = \frac {1} {4} y = 0 , u = 4 1
y = 1 , u = 5 4 y = 1 , u = \frac {5} {4}
y = 1 , u = 4 5
⇒ A = 2 × π ∫ 1 4 5 4 u 1 2 d u \Rightarrow A = 2\times \pi \int_{\frac{1}{4}}^{\frac{5}{4}} u^ { \frac {1} {2} } du ⇒ A = 2 × π ∫ 4 1 4 5 u 2 1 d u
⇒ A = 2 × π [ 2 3 ( u 3 2 ) ] ∣ 1 4 5 4 \Rightarrow A= 2 \times \pi [\frac{2}{3} (u^\frac {3} {2}) ]|_{\frac{1}{4}} ^{ \frac{5}{4}} ⇒ A = 2 × π [ 3 2 ( u 2 3 )] ∣ 4 1 4 5
⇒ A = 4 × π 3 [ ( 5 4 ) 3 2 − ( 1 4 ) 3 2 ] \Rightarrow A= \frac{4 \times \pi}{3} [(\frac{5}{4})^\frac {3} {2} - (\frac{1}{4})^\frac {3} {2}] ⇒ A = 3 4 × π [( 4 5 ) 2 3 − ( 4 1 ) 2 3 ]
⇒ A = 5.33 s q . u n i t \Rightarrow A= 5.33 sq.unit ⇒ A = 5.33 s q . u ni t
Comments