Let (x, y, z) be the co-ordinates of a vertex of the rectangular parallelopiped in the positive octant, which is inscribed in the ellipsoid
x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 a 2 x 2 + b 2 y 2 + c 2 z 2 = 1
∴ \therefore ∴ The lengths of three co-terminous edges of the rectangular solid are 2 x, 2 y, 2 z .
∴ \therefore ∴ Volume V = 2 x . 2 y . 2 z = 8 x y z \quad \mathrm{V}=2 x .2 y .2 z=8 x y z V = 2 x .2 y .2 z = 8 x yz
We are make V maximum
Let V = f ( x , y , z ) = 8 x y z \quad \mathbf{V}=f(x, y, z)=8 x y z V = f ( x , y , z ) = 8 x yz
Let ϕ ( x , y , z ) = x 2 a 2 + y 2 b 2 + z 2 c 2 − 1 = 0 \phi(x, y, z)=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}-1=0 ϕ ( x , y , z ) = a 2 x 2 + b 2 y 2 + c 2 z 2 − 1 = 0
Art 5 ;
Now using equations ;
∂ f ∂ x + λ ∂ ϕ ∂ x = 0 g i v e s 8 y z + λ 2 x a 2 = 0 … ( 2 ) ∂ f ∂ y + λ ∂ ϕ ∂ y = 0 g i v e s 8 x z + λ 2 y b 2 = 0 … ( 3 ) \frac{\partial f}{\partial x}+\lambda \frac{\partial \phi}{\partial x}=0\ gives\ 8 y z+\lambda \frac{2 x}{a^{2}}=0
\ldots(2)
\\ \frac{\partial f}{\partial y}+\lambda \frac{\partial \phi}{\partial y}=0\ gives\ 8 x z+\lambda \frac{2 y}{b^{2}}=0
\ldots(3) ∂ x ∂ f + λ ∂ x ∂ ϕ = 0 g i v es 8 yz + λ a 2 2 x = 0 … ( 2 ) ∂ y ∂ f + λ ∂ y ∂ ϕ = 0 g i v es 8 x z + λ b 2 2 y = 0 … ( 3 )
and ∂ f ∂ z + λ ∂ ϕ ∂ z = 0 g i v e s 8 x y + λ 2 z c 2 = 0... ( 4 ) \frac{\partial f}{\partial z}+\lambda \frac{\partial \phi}{\partial z}=0\ gives\ 8 x y+\lambda \frac{2 z}{c^{2}}=0 ...(4) ∂ z ∂ f + λ ∂ z ∂ ϕ = 0 g i v es 8 x y + λ c 2 2 z = 0... ( 4 )
Multiplying equations (2), (3) and (4) by x, y and z respectively and adding them, we have
8 y z − 12 x y z ⋅ 2 x a 2 = 0 or 8 a 2 y z − 24 x 2 y z = 0 or 8 y z ( a 2 − 3 x 2 ) = 0 But 8 y z ≠ 0. ∴ a 2 − 3 x 2 = 0 i.e., 3 x 2 = a 2 or x 2 = a 2 3 ∴ x = a 3 \begin{array}{rlr}
& 8 y z-12 x y z \cdot \frac{2 x}{a^{2}}=0 & \\
& \text { or } 8 a^{2} y z-24 x^{2} y z=0 & \text { or } & 8 y z\left(a^{2}-3 x^{2}\right) & =0 \\
\text { But } \quad 8 y z \neq 0 . & & \therefore & a^{2}-3 x^{2} & =0 \\
\text { i.e., } \quad 3 x^{2}=a^{2} & \text { or } & x^{2} & =\frac{a^{2}}{3} \\
\therefore \quad & x=\frac{a}{\sqrt{3}} & &
\end{array} But 8 yz = 0. i.e., 3 x 2 = a 2 ∴ 8 yz − 12 x yz ⋅ a 2 2 x = 0 or 8 a 2 yz − 24 x 2 yz = 0 or x = 3 a or ∴ x 2 8 yz ( a 2 − 3 x 2 ) a 2 − 3 x 2 = 3 a 2 = 0 = 0
Similarly, by putting the values of λ \lambda λ in Eqns. (3) and (4), we get
y = b 3 and z = c 3 ∴ Maximum volume = 8 x y z = 8 ⋅ a 3 ⋅ b 3 ⋅ c 3 = 8 a b c 3 3 . y=\frac{b}{\sqrt{3}} \quad \text { and } \quad z=\frac{c}{\sqrt{3}}
\\\therefore \quad \text { Maximum volume }=8 x y z=8 \cdot \frac{a}{\sqrt{3}} \cdot \frac{b}{\sqrt{3}} \cdot \frac{c}{\sqrt{3}}=\frac{8 a b c}{3 \sqrt{3}} . y = 3 b and z = 3 c ∴ Maximum volume = 8 x yz = 8 ⋅ 3 a ⋅ 3 b ⋅ 3 c = 3 3 8 ab c .
Comments