Find the volume of the largest rectangular solid which can be inscribed in the
ellipsoid
x
2
a2
+
y
2
b
2
+
z
2
c
2
= 1
Let (x, y, z) be the co-ordinates of a vertex of the rectangular parallelopiped in the positive octant, which is inscribed in the ellipsoid
"\\frac{x^{2}}{a^{2}}+\\frac{y^{2}}{b^{2}}+\\frac{z^{2}}{c^{2}}=1"
"\\therefore" The lengths of three co-terminous edges of the rectangular solid are 2 x, 2 y, 2 z .
"\\therefore" Volume "\\quad \\mathrm{V}=2 x .2 y .2 z=8 x y z"
We are make V maximum
Let "\\quad \\mathbf{V}=f(x, y, z)=8 x y z"
Let "\\phi(x, y, z)=\\frac{x^{2}}{a^{2}}+\\frac{y^{2}}{b^{2}}+\\frac{z^{2}}{c^{2}}-1=0"
Art 5 ;
Now using equations ;
"\\frac{\\partial f}{\\partial x}+\\lambda \\frac{\\partial \\phi}{\\partial x}=0\\ gives\\ 8 y z+\\lambda \\frac{2 x}{a^{2}}=0 \n\n \\ldots(2) \n\n\\\\ \\frac{\\partial f}{\\partial y}+\\lambda \\frac{\\partial \\phi}{\\partial y}=0\\ gives\\ 8 x z+\\lambda \\frac{2 y}{b^{2}}=0 \n\n \\ldots(3)"
and "\\frac{\\partial f}{\\partial z}+\\lambda \\frac{\\partial \\phi}{\\partial z}=0\\ gives\\ 8 x y+\\lambda \\frac{2 z}{c^{2}}=0 ...(4)"
Multiplying equations (2), (3) and (4) by x, y and z respectively and adding them, we have
"\\begin{array}{rlr} \n\n& 8 y z-12 x y z \\cdot \\frac{2 x}{a^{2}}=0 & \\\\\n\n& \\text { or } 8 a^{2} y z-24 x^{2} y z=0 & \\text { or } & 8 y z\\left(a^{2}-3 x^{2}\\right) & =0 \\\\\n\n\\text { But } \\quad 8 y z \\neq 0 . & & \\therefore & a^{2}-3 x^{2} & =0 \\\\\n\n\\text { i.e., } \\quad 3 x^{2}=a^{2} & \\text { or } & x^{2} & =\\frac{a^{2}}{3} \\\\\n\n\\therefore \\quad & x=\\frac{a}{\\sqrt{3}} & &\n\n\\end{array}"
Similarly, by putting the values of "\\lambda" in Eqns. (3) and (4), we get
"y=\\frac{b}{\\sqrt{3}} \\quad \\text { and } \\quad z=\\frac{c}{\\sqrt{3}}\n\n\n\n\\\\\\therefore \\quad \\text { Maximum volume }=8 x y z=8 \\cdot \\frac{a}{\\sqrt{3}} \\cdot \\frac{b}{\\sqrt{3}} \\cdot \\frac{c}{\\sqrt{3}}=\\frac{8 a b c}{3 \\sqrt{3}} ."
Comments
Leave a comment