∫ s i n ( x 2 ) . d x \smallint{sin(x^2)}.dx ∫ s in ( x 2 ) . d x
Substitute u = 2 . x π u=\frac{\sqrt{2}.x}{\sqrt{π}} u = π 2 . x
d x = π 2 . d u dx=\frac{\sqrt{π}}{\sqrt{2}}.du d x = 2 π . d u
∫ s i n ( x 2 ) . d x = π 2 ∫ s i n ( π . u 2 2 ) . d u \smallint{sin(x^2)}.dx=
\frac{\sqrt{π}}{\sqrt{2}}\smallint{sin(\frac{π.u^2}{2})}.du ∫ s in ( x 2 ) . d x = 2 π ∫ s in ( 2 π . u 2 ) . d u
These is special integral Fresnel integral = S ( u ) =S(u) = S ( u )
Plug in solved integrals
π 2 ∫ s i n ( π . u 2 2 ) . d u = π . S ( u ) 2 \frac{\sqrt{π}}{\sqrt{2}}\smallint{sin(\frac{π.u^2}{2})}.du=\frac{\sqrt{π}.S(u)}{\sqrt2} 2 π ∫ s in ( 2 π . u 2 ) . d u = 2 π . S ( u )
Undo Substitution u = 2 . x π u=\frac{\sqrt{2}.x}{\sqrt{π}} u = π 2 . x
= π . S ( 2 . x π ) 2 + c =\frac{\sqrt{π}.S(
\frac{\sqrt{2}.x}{\sqrt{π}}
)}{\sqrt2}+c = 2 π . S ( π 2 . x ) + c
Hence
∫ s i n ( x 2 ) . d x = π . S ( 2 . x π ) 2 + c \smallint{sin(x^2)}.dx
=\frac{\sqrt{π}.S(
\frac{\sqrt{2}.x}{\sqrt{π}}
)}{\sqrt2}+c ∫ s in ( x 2 ) . d x = 2 π . S ( π 2 . x ) + c
Comments