Integral of sin(x^2)
"\\smallint{sin(x^2)}.dx"
Substitute "u=\\frac{\\sqrt{2}.x}{\\sqrt{\u03c0}}"
"dx=\\frac{\\sqrt{\u03c0}}{\\sqrt{2}}.du"
"\\smallint{sin(x^2)}.dx=\n\\frac{\\sqrt{\u03c0}}{\\sqrt{2}}\\smallint{sin(\\frac{\u03c0.u^2}{2})}.du"
These is special integral Fresnel integral "=S(u)"
Plug in solved integrals
"\\frac{\\sqrt{\u03c0}}{\\sqrt{2}}\\smallint{sin(\\frac{\u03c0.u^2}{2})}.du=\\frac{\\sqrt{\u03c0}.S(u)}{\\sqrt2}"
Undo Substitution "u=\\frac{\\sqrt{2}.x}{\\sqrt{\u03c0}}"
"=\\frac{\\sqrt{\u03c0}.S(\n\\frac{\\sqrt{2}.x}{\\sqrt{\u03c0}}\n\n)}{\\sqrt2}+c"
Hence
"\\smallint{sin(x^2)}.dx\n=\\frac{\\sqrt{\u03c0}.S(\n\\frac{\\sqrt{2}.x}{\\sqrt{\u03c0}}\n\n)}{\\sqrt2}+c"
Comments
Leave a comment