Question #267124

Integral of sin(x^2)


1
Expert's answer
2021-11-17T12:01:28-0500

sin(x2).dx\smallint{sin(x^2)}.dx



Substitute u=2.xπu=\frac{\sqrt{2}.x}{\sqrt{π}}


dx=π2.dudx=\frac{\sqrt{π}}{\sqrt{2}}.du


sin(x2).dx=π2sin(π.u22).du\smallint{sin(x^2)}.dx= \frac{\sqrt{π}}{\sqrt{2}}\smallint{sin(\frac{π.u^2}{2})}.du


These is special integral Fresnel integral =S(u)=S(u)


Plug in solved integrals


π2sin(π.u22).du=π.S(u)2\frac{\sqrt{π}}{\sqrt{2}}\smallint{sin(\frac{π.u^2}{2})}.du=\frac{\sqrt{π}.S(u)}{\sqrt2}



Undo Substitution u=2.xπu=\frac{\sqrt{2}.x}{\sqrt{π}}


=π.S(2.xπ)2+c=\frac{\sqrt{π}.S( \frac{\sqrt{2}.x}{\sqrt{π}} )}{\sqrt2}+c


Hence

sin(x2).dx=π.S(2.xπ)2+c\smallint{sin(x^2)}.dx =\frac{\sqrt{π}.S( \frac{\sqrt{2}.x}{\sqrt{π}} )}{\sqrt2}+c



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS