1.
series diverges if
k→∞lim∣ak∣=k→∞lim∣αk/k2∣=∞⟹∣α∣>1
series converge absolutely if
k→∞lim∣ak∣=k→∞lim∣αk/k2∣=0⟹∣α∣<1
2.
series diverges if
k→∞lim∣ak∣=k→∞lim∣(α−1)k/k∣=∞⟹∣α∣>1
series converge absolutely if
k→∞lim∣ak∣=k→∞lim∣(α−1)k/k∣=0⟹∣α−1∣<1⟹0<α<1 and 1<α<2
3.
for alternating series:
series converges if
∣an∣ decreases monotonically, i. e. ∣an+1∣≤∣an∣ and n→∞lim∣an∣=0
n→∞lim∣an∣=n→∞lim∣1/(nlnn)∣=0
nlnn1≥(n+1)ln(n+1)1
so, series converge
for series of absolute values n=2∑∞nlnn1 :
∫2∞xlnx1dx=ln(lnx)∣2∞=∞
so, n=2∑∞nlnn1 diverges, this means that n=2∑∞nlnn(−1)n converge conditionally
Comments
Leave a comment