1.
series diverges if
"\\displaystyle{\\lim_{k\\to \\infin}}|a_k|=\\displaystyle{\\lim_{k\\to \\infin}}|\\alpha^k\/k^2|=\\infin\\implies |\\alpha|>1"
series converge absolutely if
"\\displaystyle{\\lim_{k\\to \\infin}}|a_k|=\\displaystyle{\\lim_{k\\to \\infin}}|\\alpha^k\/k^2|=0\\implies |\\alpha|<1"
2.
series diverges if
"\\displaystyle{\\lim_{k\\to \\infin}}|a_k|=\\displaystyle{\\lim_{k\\to \\infin}}|(\\alpha-1)^k\/k|=\\infin\\implies |\\alpha|>1"
series converge absolutely if
"\\displaystyle{\\lim_{k\\to \\infin}}|a_k|=\\displaystyle{\\lim_{k\\to \\infin}}|(\\alpha-1)^k\/k|=0\\implies |\\alpha-1|<1\\implies 0<\\alpha<1" and "1<\\alpha<2"
3.
for alternating series:
series converges if
"|a_n|" decreases monotonically, i. e. "|a_{n+1}|\\le |a_n|" and "\\displaystyle{\\lim_{n\\to \\infin}}|a_n|=0"
"\\displaystyle{\\lim_{n\\to \\infin}}|a_n|=\\displaystyle{\\lim_{n\\to \\infin}}|1\/(nlnn)|=0"
"\\frac{1}{nlnn}\\ge\\frac{1}{(n+1)ln(n+1)}"
so, series converge
for series of absolute values "\\displaystyle\\sum_{n=2}^{\\infin}\\frac{1}{nlnn}" :
"\\int_2^{\\infin}\\frac{1}{xlnx}dx=ln(lnx)|^{\\infin}_2=\\infin"
so, "\\displaystyle\\sum_{n=2}^{\\infin}\\frac{1}{nlnn}" diverges, this means that "\\displaystyle\\sum_{n=2}^{\\infin}\\frac{(-1)^n}{nlnn}" converge conditionally
Comments
Leave a comment