1.
series diverges if
kββlimββ£akββ£=kββlimββ£Ξ±k/k2β£=ββΉβ£Ξ±β£>1
series converge absolutely if
kββlimββ£akββ£=kββlimββ£Ξ±k/k2β£=0βΉβ£Ξ±β£<1
2.
series diverges if
kββlimββ£akββ£=kββlimββ£(Ξ±β1)k/kβ£=ββΉβ£Ξ±β£>1
series converge absolutely if
kββlimββ£akββ£=kββlimββ£(Ξ±β1)k/kβ£=0βΉβ£Ξ±β1β£<1βΉ0<Ξ±<1 and 1<Ξ±<2
3.
for alternating series:
series converges if
β£anββ£ decreases monotonically, i. e. β£an+1ββ£β€β£anββ£ and nββlimββ£anββ£=0
nββlimββ£anββ£=nββlimββ£1/(nlnn)β£=0
nlnn1ββ₯(n+1)ln(n+1)1β
so, series converge
for series of absolute values n=2βββnlnn1β :
β«2ββxlnx1βdx=ln(lnx)β£2ββ=β
so, n=2βββnlnn1β diverges, this means that n=2βββnlnn(β1)nβ converge conditionally
Comments