Answer to Question #266793 in Calculus for Sayem

Question #266793

Determine for which value of α\alpha the given series converge absolutely, converge conditionally, or diverges.

  1. k=1((1)\displaystyle\sum_{k=1}^ ∞ ((-1) k+1 * αk\alpha^k ) / k2
  2. k=1((α1)k\displaystyle\sum_{k=1}^ ∞ ((\alpha -1)^k ​ ) / k

For each of the following series, determine whether it is absolutely convergent, conditionally convergent, or divergent. Justify your answer.

  1. n=2(1)n/(nlnn)\displaystyle\sum_{n=2}^ ∞ (-1)^n/(n ln n)
1
Expert's answer
2021-11-23T16:46:06-0500

1.

series diverges if

limkak=limkαk/k2=    α>1\displaystyle{\lim_{k\to \infin}}|a_k|=\displaystyle{\lim_{k\to \infin}}|\alpha^k/k^2|=\infin\implies |\alpha|>1


series converge absolutely if

limkak=limkαk/k2=0    α<1\displaystyle{\lim_{k\to \infin}}|a_k|=\displaystyle{\lim_{k\to \infin}}|\alpha^k/k^2|=0\implies |\alpha|<1


2.

series diverges if

limkak=limk(α1)k/k=    α>1\displaystyle{\lim_{k\to \infin}}|a_k|=\displaystyle{\lim_{k\to \infin}}|(\alpha-1)^k/k|=\infin\implies |\alpha|>1


series converge absolutely if

limkak=limk(α1)k/k=0    α1<1    0<α<1\displaystyle{\lim_{k\to \infin}}|a_k|=\displaystyle{\lim_{k\to \infin}}|(\alpha-1)^k/k|=0\implies |\alpha-1|<1\implies 0<\alpha<1 and 1<α<21<\alpha<2


3.

for alternating series:

series converges if

an|a_n| decreases monotonically, i. e. an+1an|a_{n+1}|\le |a_n| and limnan=0\displaystyle{\lim_{n\to \infin}}|a_n|=0


limnan=limn1/(nlnn)=0\displaystyle{\lim_{n\to \infin}}|a_n|=\displaystyle{\lim_{n\to \infin}}|1/(nlnn)|=0


1nlnn1(n+1)ln(n+1)\frac{1}{nlnn}\ge\frac{1}{(n+1)ln(n+1)}


so, series converge


for series of absolute values n=21nlnn\displaystyle\sum_{n=2}^{\infin}\frac{1}{nlnn} :


21xlnxdx=ln(lnx)2=\int_2^{\infin}\frac{1}{xlnx}dx=ln(lnx)|^{\infin}_2=\infin


so, n=21nlnn\displaystyle\sum_{n=2}^{\infin}\frac{1}{nlnn} diverges, this means that n=2(1)nnlnn\displaystyle\sum_{n=2}^{\infin}\frac{(-1)^n}{nlnn} converge conditionally





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment