∫(x2+3)23−x2 dx=−∫(x2+3)2x2−3 dx=−∫((x2+3)2x2+3−(x2+3)26)dx=−∫(x2+31−(x2+3)26)dx=−∫x2+31 dx−6∫(x2+3)21 dx=−3arctan(3x)+6[6(x2+3)x+61∫x2+31 dx][∵(ax2+b)n1dx=2 b(n−1)2n−3∫(ax2+b)n−11 dx+2 b(n−1)(ax2+b)n−1x]=−3arctan(3x)+x2+3x+3arctan(3x)=x2+3x
Comments