Question #266487

Integrate (3-x^2)/(x^2+3)^2


1
Expert's answer
2021-11-16T11:36:38-0500

3x2(x2+3)2 dx=x23(x2+3)2 dx=(x2+3(x2+3)26(x2+3)2)dx=(1x2+36(x2+3)2)dx=1x2+3 dx61(x2+3)2 dx=arctan(x3)3+6[x6(x2+3)+161x2+3 dx][1(ax2+b)ndx=2n32 b(n1)1(ax2+b)n1 dx+x2 b(n1)(ax2+b)n1]=arctan(x3)3+xx2+3+arctan(x3)3=xx2+3\begin{aligned} &\int \frac{3-x^{2}}{\left(x^{2}+3\right)^{2}} \mathrm{~d} x \\ &=-\int \frac{x^{2}-3}{\left(x^{2}+3\right)^{2}} \mathrm{~d} x \\ &=-\int\left(\frac{x^{2}+3}{\left(x^{2}+3\right)^{2}}-\frac{6}{\left(x^{2}+3\right)^{2}}\right) \mathrm{d} x \\ &=-\int\left(\frac{1}{x^{2}+3}-\frac{6}{\left(x^{2}+3\right)^{2}}\right) \mathrm{d} x \\ &=-\int \frac{1}{x^{2}+3} \mathrm{~d} x-6 \int \frac{1}{\left(x^{2}+3\right)^{2}} \mathrm{~d} x \\ &=-\frac{\arctan \left(\frac{x}{\sqrt{3}}\right)}{\sqrt{3}}+6\left[\frac{x}{6\left(x^{2}+3\right)}+\frac{1}{6} \int \frac{1}{x^{2}+3} \mathrm{~d} x\right] \\ &[\because \frac{1}{\left(\mathrm{a} x^{2}+\mathrm{b}\right)^{\mathrm{n}}} \mathrm{d} x=\frac{2 \mathrm{n}-3}{2 \mathrm{~b}(\mathrm{n}-1)} \int \frac{1}{\left(\mathrm{a} x^{2}+\mathrm{b}\right)^{\mathrm{n}-1}} \mathrm{~d} x+\frac{x}{2 \mathrm{~b}(\mathrm{n}-1)\left(\mathrm{a} x^{2}+\mathrm{b}\right)^{\mathrm{n}-1}} ]\\ &=-\frac{\arctan \left(\frac{x}{\sqrt{3}}\right)}{\sqrt{3}}+ \frac{x}{x^{2}+3}+\frac{\arctan \left(\frac{x}{\sqrt{3}}\right)}{\sqrt{3}} =\frac{x}{x^{2}+3} \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS