Question #266347

The graph of the parametric equations is called a cycloid.

x=θ-sinθ and y=1-cosθ for 0≤θ≤2π

(a) find dy/dx

(b) find an equation of the tangent to the cycloid at the point where θ=π/3

(c) at what point is the tangent horizontal?

(d) graph the cycloid and the tangent lines in parts (b) and (c)



1
Expert's answer
2021-11-18T09:17:26-0500

(a) dydx=dydθdxdθ\frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}


y=1cosθ, dydθ=sinθy=1-cos\theta ,\ \frac{dy}{d\theta}=sin\theta


x=\theta-sin\theta,\ dxdθ=1cosθ\frac{dx}{d\theta}=1-cos\theta


therefore dydx=sinθ1cosθtherefore \ \frac{dy}{dx}=\frac{sin\theta}{1-cos\theta}



(b)Equation of tangent line to the cycloid

when θ=π3 we havewhen \ \theta=\frac{\pi}{3}\ we \ have


x=r(π3sinπ3)=r(π332)x=r(\frac{\pi}{3}-sin\frac{\pi}{3})=r(\frac{\pi}{3}-\frac{\sqrt{3}}{2})


y=r(1cosπ3)=r2y=r(1-cos\frac{\pi}{3})=\frac{r}{2}

anddydx=sin(π3)1cosπ3=32112=3\frac{dy}{dx}=\frac{sin(\frac{\pi}{3})}{1-cos\frac{\pi}{3}}=\frac{\frac{\sqrt{3}}{2}}{1-\frac{1}{2}}=\sqrt{3}

The slope of the tangent is 3\sqrt{3}


its equation is yr2=3(xrπ3+r33) or3xy=r(π32)y-\frac{r}{2}=\sqrt{3}(x-\frac{r\pi}{3}+\frac{r\sqrt{3}}{3})\ or \sqrt{3}x-y=r(\frac{\pi}{\sqrt{3}}-2)



(c)The tangent is horizontal when dydx=0\frac{dy}{dx}=0


This occurs when sin θ = 0 and 1 – cos θ ≠ 0,

that is, θ = (2n – 1)π, n an integer.


The corresponding point on the cycloid is

((2n – 1)π, 2).

When θ = 2nπ, both dx/dθ and dy/dθ are 0.



(d)Graph







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS