(a) d y d x = d y d θ d x d θ \frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} d x d y = d θ d x d θ d y
y = 1 − c o s θ , d y d θ = s i n θ y=1-cos\theta ,\ \frac{dy}{d\theta}=sin\theta y = 1 − cos θ , d θ d y = s in θ
x=\theta-sin\theta,\ d x d θ = 1 − c o s θ \frac{dx}{d\theta}=1-cos\theta d θ d x = 1 − cos θ
t h e r e f o r e d y d x = s i n θ 1 − c o s θ therefore \ \frac{dy}{dx}=\frac{sin\theta}{1-cos\theta} t h ere f ore d x d y = 1 − cos θ s in θ
(b)Equation of tangent line to the cycloid
w h e n θ = π 3 w e h a v e when \ \theta=\frac{\pi}{3}\ we \ have w h e n θ = 3 π w e ha v e
x = r ( π 3 − s i n π 3 ) = r ( π 3 − 3 2 ) x=r(\frac{\pi}{3}-sin\frac{\pi}{3})=r(\frac{\pi}{3}-\frac{\sqrt{3}}{2}) x = r ( 3 π − s in 3 π ) = r ( 3 π − 2 3 )
y = r ( 1 − c o s π 3 ) = r 2 y=r(1-cos\frac{\pi}{3})=\frac{r}{2} y = r ( 1 − cos 3 π ) = 2 r
andd y d x = s i n ( π 3 ) 1 − c o s π 3 = 3 2 1 − 1 2 = 3 \frac{dy}{dx}=\frac{sin(\frac{\pi}{3})}{1-cos\frac{\pi}{3}}=\frac{\frac{\sqrt{3}}{2}}{1-\frac{1}{2}}=\sqrt{3} d x d y = 1 − cos 3 π s in ( 3 π ) = 1 − 2 1 2 3 = 3
The slope of the tangent is 3 \sqrt{3} 3
its equation is y − r 2 = 3 ( x − r π 3 + r 3 3 ) o r 3 x − y = r ( π 3 − 2 ) y-\frac{r}{2}=\sqrt{3}(x-\frac{r\pi}{3}+\frac{r\sqrt{3}}{3})\ or \sqrt{3}x-y=r(\frac{\pi}{\sqrt{3}}-2) y − 2 r = 3 ( x − 3 r π + 3 r 3 ) or 3 x − y = r ( 3 π − 2 )
(c)The tangent is horizontal when d y d x = 0 \frac{dy}{dx}=0 d x d y = 0
This occurs when sin θ = 0 and 1 – cos θ ≠ 0,
that is, θ = (2n – 1)π, n an integer.
The corresponding point on the cycloid is
((2n – 1)π, 2).
When θ = 2nπ, both dx/dθ and dy/dθ are 0.
(d)Graph
Comments