Question #266496

1.     The diameter of a right circular cylinder is equal to its altitude. Letting V and S be the respective volume and surface area of the cylinder and 2r the diameter, use differentials to estimate the maximum possible error, relative error, and percentage error in computing

(a)   the volume of this cylinder and

(b)  the surface area of the cylinder

when the measured diameter is 20 cm and the maximum possible error in the measurement is 0 1 cm.


1
Expert's answer
2021-11-16T13:52:18-0500

(a) Maximum possible error of the volume

r=10cm

d=h=20cm

V=πr2hV= \pi r^2h


dVdr=2πrh\frac{dV}{dr}=2\pi rh


dV=2πrhdrdV=2\pi rhdr


dV=(2π×10×20)0.1dV=(2\pi\times10\times20)0.1


dV=40π=125.66cm3dV=40\pi=125.66cm^3



Relative error of the volume

=dVV=\frac{dV}{V}


=40π2000π=\frac{40\pi}{2000\pi}


=0.02=0.02



Percentage error of the volume

=Relative error×100= Relative\ error \times 100

=0.02×100=2%=0.02\times100\\=2\%



(b)Maximum possible error of surface area

S=2πrh+2πr2S=2\pi rh+2\pi r^2


dSdr=ddr(2πrh)+ddr(2πr2)\frac{dS}{dr}=\frac{d}{dr}(2\pi rh)+\frac{d}{dr}(2\pi r^2)


dS=(2πh+4πr)drdS=(2\pi h+4\pi r)dr


dS=(2π×20+4π×10)0.1dS=(2\pi\times 20+4\pi\times10)0.1


dS=80π×0.1=8π=25.13cm2dS=80\pi\times0.1=8\pi=25.13cm^2


=25.13cm2=25.13cm^2



Relative error of surface area

dSS=8πcm22000πcm2\frac{dS}{S}=\frac{8\pi cm^2}{2000\pi cm^2}


=0.0133=0.0133



percentage error of surface area

=Relative error×100=0.0133×100=1.33%=Relative \ error \times100\\=0.0133\times100\\=1.33\%


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS