Answer with chain rule
Z = cos (x² + y²), x = u cos v, y = u sin v
Zu=Zxxu+ZyyuZ_u=Z_xx_u+Z_yy_uZu=Zxxu+Zyyu
Zu=−2xsin(x2+y2)cosv−2ysin(x2+y2)sinv=Z_u=-2xsin(x² + y²)cosv-2ysin(x² + y²)sinv=Zu=−2xsin(x2+y2)cosv−2ysin(x2+y2)sinv=
=−2ucos2vsin(u2)−2usin2vsin(u2)=−2usin(u2)=-2ucos^2vsin(u^2)-2usin^2vsin(u^2)=-2usin(u^2)=−2ucos2vsin(u2)−2usin2vsin(u2)=−2usin(u2)
Zv=Zxxv+ZyyvZ_v=Z_xx_v+Z_yy_vZv=Zxxv+Zyyv
Zv=2xusin(x2+y2)sinv−2yusin(x2+y2)cosv=Z_v=2xusin(x² + y²)sinv-2yusin(x² + y²)cosv=Zv=2xusin(x2+y2)sinv−2yusin(x2+y2)cosv=
=u2sin2vsinu2−u2sin2vsinu2=0=u^2sin2vsinu^2-u^2sin2vsinu^2=0=u2sin2vsinu2−u2sin2vsinu2=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments