Let a n = 3 n ( x − 1 ) n ( n + 1 ) 2 . a_n=\dfrac{3^n(x-1)^n}{(n+1)^2}. a n = ( n + 1 ) 2 3 n ( x − 1 ) n . Then
∣ a n + 1 a n ∣ = ∣ 3 n + 1 ( x − 1 ) n + 1 ( n + 1 + 1 ) 2 3 n ( x − 1 ) n ( n + 1 ) 2 ∣ \bigg|\dfrac{a_{n+1}}{a_n}\bigg|=\bigg|\dfrac{\dfrac{3^{n+1}(x-1)^{n+1}}{(n+1+1)^2}}{\dfrac{3^n(x-1)^n}{(n+1)^2}}\bigg| ∣ ∣ a n a n + 1 ∣ ∣ = ∣ ∣ ( n + 1 ) 2 3 n ( x − 1 ) n ( n + 1 + 1 ) 2 3 n + 1 ( x − 1 ) n + 1 ∣ ∣
= 3 ( n + 1 n + 2 ) 2 ∣ x − 1 ∣ → 3 ∣ x − 1 ∣ a s n → ∞ =3(\dfrac{n+1}{n+2})^2|x-1|\to3|x-1|\ as \ n\to\infin = 3 ( n + 2 n + 1 ) 2 ∣ x − 1∣ → 3∣ x − 1∣ a s n → ∞ By the Ratio Test, the given series converges if 3 ∣ x − 1 ∣ < 1 3|x-1|<1 3∣ x − 1∣ < 1 and diverges if 3 ∣ x − 1 ∣ > 1. 3|x-1|>1. 3∣ x − 1∣ > 1.
Thus it converges if ∣ x − 1 ∣ < 1 3 |x-1|<\dfrac{1}{3} ∣ x − 1∣ < 3 1 and diverges if ∣ x − 1 ∣ > 1 3 |x-1|>\dfrac{1}{3} ∣ x − 1∣ > 3 1 .
∣ x − 1 ∣ < 1 3 |x-1|<\dfrac{1}{3} ∣ x − 1∣ < 3 1
− 1 3 < x − 1 < 1 3 -\dfrac{1}{3}<x-1<\dfrac{1}{3} − 3 1 < x − 1 < 3 1
2 3 < x − 1 < 4 3 \dfrac{2}{3}<x-1<\dfrac{4}{3} 3 2 < x − 1 < 3 4
This means that the series converges in the interval ( 2 3 , 4 3 ) . (\dfrac{2}{3}, \dfrac{4}{3}). ( 3 2 , 3 4 ) .
If x = 2 3 , x=\dfrac{2}{3}, x = 3 2 , the series becomes
∑ n = 1 ∞ 3 n ( 2 3 − 1 ) n ( n + 1 ) 2 = ∑ n = 1 ∞ ( − 1 ) n ( n + 1 ) 2 \displaystyle\sum_{n=1}^{\infin}\dfrac{3^n(\dfrac{2}{3}-1)^n}{(n+1)^2}=\displaystyle\sum_{n=1}^{\infin}\dfrac{(-1)^n}{(n+1)^2} n = 1 ∑ ∞ ( n + 1 ) 2 3 n ( 3 2 − 1 ) n = n = 1 ∑ ∞ ( n + 1 ) 2 ( − 1 ) n The series ∑ n = 1 ∞ 1 ( n + 1 ) 2 = ∑ k = 2 ∞ 1 k 2 \displaystyle\sum_{n=1}^{\infin}\dfrac{1}{(n+1)^2}=\displaystyle\sum_{k=2}^{\infin}\dfrac{1}{k^2} n = 1 ∑ ∞ ( n + 1 ) 2 1 = k = 2 ∑ ∞ k 2 1 converges as p p p -series with p = 2 > 1. p=2>1. p = 2 > 1.
Then the series ∑ n = 1 ∞ ( − 1 ) n ( n + 1 ) 2 \displaystyle\sum_{n=1}^{\infin}\dfrac{(-1)^n}{(n+1)^2} n = 1 ∑ ∞ ( n + 1 ) 2 ( − 1 ) n converges absolutely.
If x = 4 3 , x=\dfrac{4}{3}, x = 3 4 , the series becomes
∑ n = 1 ∞ 3 n ( 4 3 − 1 ) n ( n + 1 ) 2 = ∑ n = 1 ∞ 1 ( n + 1 ) 2 \displaystyle\sum_{n=1}^{\infin}\dfrac{3^n(\dfrac{4}{3}-1)^n}{(n+1)^2}=\displaystyle\sum_{n=1}^{\infin}\dfrac{1}{(n+1)^2} n = 1 ∑ ∞ ( n + 1 ) 2 3 n ( 3 4 − 1 ) n = n = 1 ∑ ∞ ( n + 1 ) 2 1 The series ∑ n = 1 ∞ 1 ( n + 1 ) 2 = ∑ k = 2 ∞ 1 k 2 \displaystyle\sum_{n=1}^{\infin}\dfrac{1}{(n+1)^2}=\displaystyle\sum_{k=2}^{\infin}\dfrac{1}{k^2} n = 1 ∑ ∞ ( n + 1 ) 2 1 = k = 2 ∑ ∞ k 2 1 converges as p p p -series with p = 2 > 1. p=2>1. p = 2 > 1.
Therefore the interval of convergence is [ 2 3 , 4 3 ] . \bigg[\dfrac{2}{3}, \dfrac{4}{3}\bigg]. [ 3 2 , 3 4 ] .
Comments