Question #266887

Determine the interval of convergence for the power series

n=1\displaystyle\sum_{n=1}^ ∞ 3n(x-1)n/(n+1)2

1
Expert's answer
2021-11-17T03:47:03-0500

Let an=3n(x1)n(n+1)2.a_n=\dfrac{3^n(x-1)^n}{(n+1)^2}. Then


an+1an=3n+1(x1)n+1(n+1+1)23n(x1)n(n+1)2\bigg|\dfrac{a_{n+1}}{a_n}\bigg|=\bigg|\dfrac{\dfrac{3^{n+1}(x-1)^{n+1}}{(n+1+1)^2}}{\dfrac{3^n(x-1)^n}{(n+1)^2}}\bigg|

=3(n+1n+2)2x13x1 as n=3(\dfrac{n+1}{n+2})^2|x-1|\to3|x-1|\ as \ n\to\infin

By the Ratio Test, the given series converges if 3x1<13|x-1|<1 and diverges if 3x1>1.3|x-1|>1.

Thus it converges if x1<13|x-1|<\dfrac{1}{3} and diverges if x1>13|x-1|>\dfrac{1}{3} .


x1<13|x-1|<\dfrac{1}{3}

13<x1<13-\dfrac{1}{3}<x-1<\dfrac{1}{3}

23<x1<43\dfrac{2}{3}<x-1<\dfrac{4}{3}

This means that the series converges in the interval (23,43).(\dfrac{2}{3}, \dfrac{4}{3}).

If x=23,x=\dfrac{2}{3}, the series becomes


n=13n(231)n(n+1)2=n=1(1)n(n+1)2\displaystyle\sum_{n=1}^{\infin}\dfrac{3^n(\dfrac{2}{3}-1)^n}{(n+1)^2}=\displaystyle\sum_{n=1}^{\infin}\dfrac{(-1)^n}{(n+1)^2}

The series n=11(n+1)2=k=21k2\displaystyle\sum_{n=1}^{\infin}\dfrac{1}{(n+1)^2}=\displaystyle\sum_{k=2}^{\infin}\dfrac{1}{k^2} converges as pp -series with p=2>1.p=2>1.

Then the series n=1(1)n(n+1)2\displaystyle\sum_{n=1}^{\infin}\dfrac{(-1)^n}{(n+1)^2} converges absolutely.

If x=43,x=\dfrac{4}{3}, the series becomes


n=13n(431)n(n+1)2=n=11(n+1)2\displaystyle\sum_{n=1}^{\infin}\dfrac{3^n(\dfrac{4}{3}-1)^n}{(n+1)^2}=\displaystyle\sum_{n=1}^{\infin}\dfrac{1}{(n+1)^2}

The series n=11(n+1)2=k=21k2\displaystyle\sum_{n=1}^{\infin}\dfrac{1}{(n+1)^2}=\displaystyle\sum_{k=2}^{\infin}\dfrac{1}{k^2} converges as pp -series with p=2>1.p=2>1.

Therefore the interval of convergence is [23,43].\bigg[\dfrac{2}{3}, \dfrac{4}{3}\bigg].


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS