Question #267487

Evaluate the line integral

∫𝒖(𝑥, 𝑦, 𝑧) × ⅆ𝒓 ,

where 𝒖(𝑥, 𝑦, 𝑧) = (𝑦^2 , 𝑥, 𝑧) and the curve 𝑪 is described by 𝒛 = 𝑦 = 𝑒 𝑥 with 𝑥 ∈ [0,1]. 



1
Expert's answer
2021-11-21T16:30:53-0500

parameter for of C,

x=t, y=et ,z=et .

r(t)=t i+ et j+et k

=> dr=(i + et j + et k)dt

Then,

01u.dr=01(e2t,t,et).(1,et,et)dt=01(2e2t+tet)dt=[e2t+tetet]01=e2+ee10+1=e2\int_0^1 u.dr\\ =\int_0^1 (e^{2t},t,e^{t}).(1,e^t,e^t)dt\\ =\int_0^1 (2e^{2t}+te^{t})dt\\ =[ e^{2t}+te^{t}-e^t]_0^1\\ =e^2+e-e-1-0+1\\ =e^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS