Evaluate the line integral
∫𝒖(𝑥, 𝑦, 𝑧) × ⅆ𝒓 ,
where 𝒖(𝑥, 𝑦, 𝑧) = (𝑦^2 , 𝑥, 𝑧) and the curve 𝑪 is described by 𝒛 = 𝑦 = 𝑒 𝑥 with 𝑥 ∈ [0,1].
parameter for of C,
x=t, y=et ,z=et .
r(t)=t i+ et j+et k
=> dr=(i + et j + et k)dt
Then,
∫01u.dr=∫01(e2t,t,et).(1,et,et)dt=∫01(2e2t+tet)dt=[e2t+tet−et]01=e2+e−e−1−0+1=e2\int_0^1 u.dr\\ =\int_0^1 (e^{2t},t,e^{t}).(1,e^t,e^t)dt\\ =\int_0^1 (2e^{2t}+te^{t})dt\\ =[ e^{2t}+te^{t}-e^t]_0^1\\ =e^2+e-e-1-0+1\\ =e^2∫01u.dr=∫01(e2t,t,et).(1,et,et)dt=∫01(2e2t+tet)dt=[e2t+tet−et]01=e2+e−e−1−0+1=e2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments