Determine the y-intercept, the zeros, the number of turning points, and the behavior of the graph and sketch the graph of the following polynomial functions.
1. P(x)=-2x³-22x²-60x
2. P(x)=6x³+5x²-2x-1
4. P(x)=x⁴+x³-10x²+8
1. "P(x)=-2x^3-22x^2-60x"
"y" -intercept: "x=0"
"P(0)=-2(0)^3-22(0)^2-60(0)=0"
Point "(0,0)"
The graph passes through the origin.
zeros: "y=0=>-2x^3-22x^2-60x=0"
"-2x(x+6)(x+5)=0"
"zeros; -6, -5, 0"
Point "(-6,0)", Point "(-5,0)", Point "(0,0)"
"y'=0=>-6x^2-44x-60=0"
"3x^2+22x+30=0"
"D=(22)^2-4(3)(30)=124"
"x=\\dfrac{-22\\pm\\sqrt{124}}{2(3)}=\\dfrac{-11\\pm\\sqrt{31}}{3}"
There are two turning points.
"y\\to \\infin" as "x\\to-\\infin"
"y\\to -\\infin" as "x\\to\\infin"
2. "P(x)=6x^3+5x^2-2x-1"
"y" -intercept: "x=0"
"P(0)=6(0)^3+5(0)^2-2(0)-1=-1"
Point "(0,-1)"
zeros: "y=0=>6x^3+5x^2-2x-1=0"
"6x^2(x+1)-x(x+1)-(x+1)=0"
"(x+1)(2x-1)(3x+1)=0"
"zeros; -1, -1\/3, 1\/2"
Point "(-1,0)", Point "(-1\/3,0)", Point "(1\/2,0)"
"y'=0=>18x^2+10x-2=0"
"9x^2+5x-1=0"
"D=(5)^2-4(9)(-1)=61"
"x=\\dfrac{-5\\pm\\sqrt{61}}{2(9)}"
There are two turning points.
"y\\to -\\infin" as "x\\to-\\infin"
"y\\to \\infin" as "x\\to\\infin"
4. "P(x)=x^4+x^3-10x^2+8"
"y" -intercept:"x=0"
"P(0)=(0)^4+(0)^3-10(0)^2+8=8"
Point "(0,8)"
zeros: "y=0=>x^4+x^3-10x^2+8=0"
"x^3(x-1)+2x^2(x-1)-8(x+1)(x-1)=0"
"x_1=1"
"P(-4)=(-4)^4+(-4)^3-10(-4)^2+8=40>0""P(-3)=(-3)^4+(-3)^3-10(-3)^2+8=-28<0"
There is "c_1\\in(-4, -3)" such that "y(c_1)=0."
"P(0)=(0)^4+(0)^3-10(0)^2+8=8>0"
There is "c_2\\in(-1, 0)" such that "y(c_2)=0."
"P(3)=(3)^4+(3)^3-10(3)^2+8=26>0"
There is "c_3\\in(2, 3)" such that "y(c_3)=0."
"zeros; c_1, c_2, 1, c_3."
Point "(-1,0)", Point "(-1\/3,0)", Point "(1\/2,0)"
"y'=0=>4x^3+3x^2-20x=0"
"x(4x^2+3x-20)=0"
"x_1=0"
Or
"D=(3)^2-4(4)(-20)=329"
"x=\\dfrac{-3\\pm\\sqrt{329}}{2(4)}"
There are three turning points.
"y\\to\\infin" as "x\\to-\\infin"
"y\\to \\infin" as "x\\to\\infin"
Comments
Leave a comment