Problem A.1
The graph below is made of three line segments:
-1 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
y
x
f(x)
g(x)
h(x)
The segments correspond to the following three functions:
f(x) = x − 2, g(x) = p
4 − (x − 6)2 + 2, h(x) = x − 6
Find the total length L of the graph between x = 2 and x = 10.
Problem A.2
Let f(x), g(x) and h(x) be the functions from Problem A.1. Find the derivative λ
(x) of the
following function with respect to x:
λ(x) = f(x) · g(x) + f(x) · h(x) − g(x) · h(x)
*Please give specific answers to both Problem A.1 & A.2
A 1
"f(x) = x \u2212 2" for "x\\isin [2,4]"
"g(x) = \\sqrt{4 \u2212 (x \u2212 6)^2} + 2" for "x\\isin [4,8]"
"h(x) = x \u2212 6" for "x\\isin [8,10]"
then:
length of f(x):
"L_1=\\sqrt{2^2+2^2}=2\\sqrt 2"
length of h(x):
"L_2=\\sqrt{2^2+2^2}=2\\sqrt 2"
length of g(x):
"L_3=2\\pi R\/2=2\\pi"
total length:
"L=L_1+L_2+L_3=2\\sqrt 2+2\\sqrt 2+2\\pi=2(\\pi+2\\sqrt 2)"
A 2
"f(x) \u00b7 g(x)=(x-2)(\\sqrt{4 \u2212 (x \u2212 6)^2} + 2)"
"f(x) \u00b7 h(x)=(x-2)(x-6)"
"g(x) \u00b7 h(x)=(x-6)(\\sqrt{4 \u2212 (x \u2212 6)^2} + 2)"
"\u03bb(x)=(x-2)(\\sqrt{4 \u2212 (x \u2212 6)^2} + 2)+(x-2)(x-6)-(x-6)(\\sqrt{4 \u2212 (x \u2212 6)^2} + 2)"
"\u03bb'(x)=\\sqrt{4 \u2212 (x \u2212 6)^2} + 2-\\frac{(x-2)(x-6)}{\\sqrt{4 \u2212 (x \u2212 6)^2} }+2x-8+\\sqrt{4 \u2212 (x \u2212 6)^2} + 2-\\frac{(x-6)^2}{\\sqrt{4 \u2212 (x \u2212 6)^2} }="
"=2\\sqrt{4 \u2212 (x \u2212 6)^2}+2x-4-\\frac{(2x-8)(x-6)}{\\sqrt{4 \u2212 (x \u2212 6)^2} }"
Comments
Leave a comment