Answer to Question #268653 in Calculus for Jess

Question #268653

Differentiate the function 𝑓(π‘₯) = 5π‘₯ 2 + 2 using the first principle


1
Expert's answer
2021-11-22T05:43:20-0500
fβ€²(x)=lim⁑hβ†’0f(x+h)βˆ’f(x)hf'(x)=\lim\limits_{h\to 0}\dfrac{f(x+h)-f(x)}{h}

=lim⁑hβ†’05(x+h)2+2βˆ’(5x2+2)h=\lim\limits_{h\to 0}\dfrac{5(x+h)^2+2-(5x^2+2)}{h}

=lim⁑hβ†’05x2+10xh+5h2+2βˆ’5x2βˆ’2h=\lim\limits_{h\to 0}\dfrac{5x^2+10xh+5h^2+2-5x^2-2}{h}

=lim⁑hβ†’0(10x+5h)=10x+0=10x=\lim\limits_{h\to 0}(10x+5h)=10x+0=10x

fβ€²(x)=(5x2+2)β€²=10xf'(x)=(5x^2+2)' =10x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment