Answer to Question #268868 in Calculus for Bhuvana

Question #268868

Evaluate the double integral as iterated integral in two ways : RR

R

xy2 dA; R is the region enclosed by y = 1, y = 2, x = 0,

and y = x


1
Expert's answer
2021-11-22T12:04:40-0500
120yxy2dxdy=12y2[x22]y0dy\displaystyle\int_{1}^2\displaystyle\int_{0}^yxy^2dxdy=\displaystyle\int_{1}^2y^2[\dfrac{x^2}{2}]\begin{matrix} y \\ 0 \end{matrix}dy

=12y42dy=[y510]21=110(321)=3110=\displaystyle\int_{1}^2\dfrac{y^4}{2}dy=[\dfrac{y^5}{10}]\begin{matrix} 2 \\ 1 \end{matrix}=\dfrac{1}{10}(32-1)=\dfrac{31}{10}



0112xy2dydx+12x2xy2dydx\displaystyle\int_{0}^1\displaystyle\int_{1}^2xy^2dydx+\displaystyle\int_{1}^2\displaystyle\int_{x}^2xy^2dydx

=01x[y33]21dx+12x[y33]2xdyx=\displaystyle\int_{0}^1x[\dfrac{y^3}{3}]\begin{matrix} 2 \\ 1 \end{matrix}dx+\displaystyle\int_{1}^2x[\dfrac{y^3}{3}]\begin{matrix} 2 \\ x \end{matrix}dyx

=01x3(81)dx+12x3(8x3)dx=\displaystyle\int_{0}^1\dfrac{x}{3}(8-1)dx+\displaystyle\int_{1}^2\dfrac{x}{3}(8-x^3)dx

=73[x22]10+13[4x2x55]21=\dfrac{7}{3}[\dfrac{x^2}{2}]\begin{matrix} 1 \\ 0 \end{matrix}+\dfrac{1}{3}[4x^2-\dfrac{x^5}{5}]\begin{matrix} 2 \\ 1 \end{matrix}

=76+13(16325(415))=76+2915=\dfrac{7}{6}+\dfrac{1}{3}(16-\dfrac{32}{5}-(4-\dfrac{1}{5}))=\dfrac{7}{6}+\dfrac{29}{15}

=8330=\dfrac{83}{30}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment