Evaluate the following improper integrals as iterated integrals.
(a) Z ∞
1
Z 1
e−x
1
x
3y
dy dx (b) Z 1
−1
Z √ 1
1−x2
√−1
1−x2
(2y + 1) dy dx
a)
"\\intop^{\\infin}_1\\intop^1_{e^{-x}}\\frac{1}{x^3y}dydx=\\intop^{\\infin}_1\\intop^1_{e^{-1}}\\frac{1}{x^3y}dydx=\\intop^{\\infin}_1\\frac{lny}{x^3}|^1_{e^{-1}}dx="
"=\\intop^{\\infin}_1\\frac{1}{x^3}dx=-\\frac{1}{2x^2}|^{\\infin}_1=-1\/2"
b)
"\\intop^{1}_{-1}\\intop^{1\/\\sqrt{1-x^2}}_{-1\/\\sqrt{1-x^2}}(2y+1)dydx=\\intop^{1}_{-1}\\intop^{\\infin}_{-\\infin}(2y+1)dydx=\\intop^{1}_{-1}(y^2-y)|^{\\infin}_{-\\infin}dx=-\\infin"
Comments
Leave a comment