Question #268875

Evaluate the following improper integrals as iterated integrals.

(a) Z ∞

1

Z 1

e−x

1

x

3y

dy dx (b) Z 1

−1

Z √ 1

1−x2

√−1

1−x2

(2y + 1) dy dx


1
Expert's answer
2021-11-23T17:14:55-0500

a)

1ex11x3ydydx=1e111x3ydydx=1lnyx3e11dx=\intop^{\infin}_1\intop^1_{e^{-x}}\frac{1}{x^3y}dydx=\intop^{\infin}_1\intop^1_{e^{-1}}\frac{1}{x^3y}dydx=\intop^{\infin}_1\frac{lny}{x^3}|^1_{e^{-1}}dx=


=11x3dx=12x21=1/2=\intop^{\infin}_1\frac{1}{x^3}dx=-\frac{1}{2x^2}|^{\infin}_1=-1/2


b)

111/1x21/1x2(2y+1)dydx=11(2y+1)dydx=11(y2y)dx=\intop^{1}_{-1}\intop^{1/\sqrt{1-x^2}}_{-1/\sqrt{1-x^2}}(2y+1)dydx=\intop^{1}_{-1}\intop^{\infin}_{-\infin}(2y+1)dydx=\intop^{1}_{-1}(y^2-y)|^{\infin}_{-\infin}dx=-\infin


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS