Question #268886

Find the mass and center of gravity of the cylindrical solid that has density δ(x, y, z) = h − z and is enclosed by

x

2 + y

2 = a

2

, z = 0, and z = h


1
Expert's answer
2021-11-30T11:20:21-0500

mass,m=δ(x,y,z)dV=x=aay=aa0h(hz)dzdydx=x=aay=aa[hzz22]0hdydx=h22x=aax=aadydx=h22x=aa[y]aadx=ah2x=aadx=ah2[x]aa=2a2h2Now, calculate momentsMxy=zδdV=x=aay=aa0hhzz2dzdxdy=x=aay=aa[hz22z33]0hdydx=h36x=aax=aadydx=x=aa[y]aadx=ah36x=aadx=ah36[x]aa=2a2h36Myz=xδdV=x=aay=aa0hx(hz)dzdxdy=x=aay=aax[hzz22]0hdydx=h22x=aax=aaxdydx=h22x=aax[y]aadx=ah2x=aaxdx=ah2[x22]aa=0Mxz=yδdV=x=aay=aa0hy(hz)dzdxdy=x=aay=aay[hzz22]0hdydx=h22x=aax=aaydydx=h22x=aa[y22]aadx=ah2x=aa0dx=0Center of gravity is given by(x,y,z)then,x=Myzm=02a2h2=0,y=Mxzm=02a2h2=0,z=Mxym=2a2h362a2h2=h6mass,m=\int\int\int\delta(x,y,z)dV\\ =\int_{x=-a}^a\int_{y=-a}^a\int_0^h(h-z)dzdydx\\ =\int_{x=-a}^a\int_{y=-a}^a[hz-\frac{z^2}{2}]_0^hdydx\\ =\frac{h^2}{2}\int_{x=-a}^a\int_{x=-a}^a dydx\\ =\frac{h^2}{2}\int_{x=-a}^a[y]_{-a}^a dx\\ =a{h^2}\int_{x=-a}^a dx\\ =a{h^2}[x]_{-a}^a\\ =2a^2h^2\\ \text{Now, calculate moments}\newline M_{xy}=\int\int \int z\delta dV =\int_{x=-a}^a\int_{y=-a}^a\int_0^h hz-z^2dzdxdy\\ =\int_{x=-a}^a\int_{y=-a}^a[\frac{hz^2}{2}-\frac{z^3}{3}]_0^hdydx\\ =\frac{h^3}{6}\int_{x=-a}^a\int_{x=-a}^a dydx\\ =\int_{x=-a}^a[y]_{-a}^a dx\\ =a\frac{h^3}{6}\int_{x=-a}^a dx\\ =a\frac{h^3}{6}[x]_{-a}^a\\ =2a^2\frac{h^3}{6} \\ M_{yz}=\int\int \int x\delta dV =\int_{x=-a}^a\int_{y=-a}^a\int_0^h x(h-z)dzdxdy\\ =\int_{x=-a}^a\int_{y=-a}^ax[hz-\frac{z^2}{2}]_0^hdydx\\ =\frac{h^2}{2}\int_{x=-a}^a\int_{x=-a}^a xdydx\\ =\frac{h^2}{2}\int_{x=-a}^ax[y]_{-a}^a dx\\ =a{h^2}\int_{x=-a}^a xdx\\ =a{h^2}[\frac{x^2}{2}]_{-a}^a\\ =0\\ M_{xz}=\int\int \int y\delta dV =\int_{x=-a}^a\int_{y=-a}^a\int_0^h y(h-z)dzdxdy\\ =\int_{x=-a}^a\int_{y=-a}^ay[hz-\frac{z^2}{2}]_0^hdydx\\ =\frac{h^2}{2}\int_{x=-a}^a\int_{x=-a}^a ydydx\\ =\frac{h^2}{2}\int_{x=-a}^a[\frac{y^2}{2}]_{-a}^a dx\\ =a{h^2}\int_{x=-a}^a 0dx\\ =0\\ \text{Center of gravity is given by}(x,y,z)then,\\ x=\frac{M_{yz}}{m}=\frac{0}{2a^2h^2}=0,\\ y=\frac{M_{xz}}{m}=\frac{0}{2a^2h^2}=0,\\ z=\frac{M_{xy}}{m}=\frac{2a^2\frac{h^3}{6} }{2a^2h^2}=\frac{h}{6} \\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS