Find the mass and center of gravity of the cylindrical solid that has density δ(x, y, z) = h − z and is enclosed by
x
2 + y
2 = a
2
, z = 0, and z = h
"mass,m=\\int\\int\\int\\delta(x,y,z)dV\\\\\n=\\int_{x=-a}^a\\int_{y=-a}^a\\int_0^h(h-z)dzdydx\\\\\n=\\int_{x=-a}^a\\int_{y=-a}^a[hz-\\frac{z^2}{2}]_0^hdydx\\\\\n=\\frac{h^2}{2}\\int_{x=-a}^a\\int_{x=-a}^a dydx\\\\\n=\\frac{h^2}{2}\\int_{x=-a}^a[y]_{-a}^a dx\\\\\n=a{h^2}\\int_{x=-a}^a dx\\\\\n=a{h^2}[x]_{-a}^a\\\\\n=2a^2h^2\\\\\n\n\\text{Now, calculate moments}\\newline\n\nM_{xy}=\\int\\int \\int z\\delta dV\n=\\int_{x=-a}^a\\int_{y=-a}^a\\int_0^h hz-z^2dzdxdy\\\\\n=\\int_{x=-a}^a\\int_{y=-a}^a[\\frac{hz^2}{2}-\\frac{z^3}{3}]_0^hdydx\\\\\n=\\frac{h^3}{6}\\int_{x=-a}^a\\int_{x=-a}^a dydx\\\\\n=\\int_{x=-a}^a[y]_{-a}^a dx\\\\\n=a\\frac{h^3}{6}\\int_{x=-a}^a dx\\\\\n=a\\frac{h^3}{6}[x]_{-a}^a\\\\\n=2a^2\\frac{h^3}{6}\n\\\\\n\nM_{yz}=\\int\\int \\int x\\delta dV\n=\\int_{x=-a}^a\\int_{y=-a}^a\\int_0^h x(h-z)dzdxdy\\\\\n=\\int_{x=-a}^a\\int_{y=-a}^ax[hz-\\frac{z^2}{2}]_0^hdydx\\\\\n=\\frac{h^2}{2}\\int_{x=-a}^a\\int_{x=-a}^a xdydx\\\\\n=\\frac{h^2}{2}\\int_{x=-a}^ax[y]_{-a}^a dx\\\\\n=a{h^2}\\int_{x=-a}^a xdx\\\\\n=a{h^2}[\\frac{x^2}{2}]_{-a}^a\\\\\n=0\\\\\n\n\nM_{xz}=\\int\\int \\int y\\delta dV\n=\\int_{x=-a}^a\\int_{y=-a}^a\\int_0^h y(h-z)dzdxdy\\\\\n=\\int_{x=-a}^a\\int_{y=-a}^ay[hz-\\frac{z^2}{2}]_0^hdydx\\\\\n=\\frac{h^2}{2}\\int_{x=-a}^a\\int_{x=-a}^a ydydx\\\\\n=\\frac{h^2}{2}\\int_{x=-a}^a[\\frac{y^2}{2}]_{-a}^a dx\\\\\n=a{h^2}\\int_{x=-a}^a 0dx\\\\\n=0\\\\\n\n\\text{Center of gravity is given by}(x,y,z)then,\\\\\nx=\\frac{M_{yz}}{m}=\\frac{0}{2a^2h^2}=0,\\\\\ny=\\frac{M_{xz}}{m}=\\frac{0}{2a^2h^2}=0,\\\\\nz=\\frac{M_{xy}}{m}=\\frac{2a^2\\frac{h^3}{6}\n}{2a^2h^2}=\\frac{h}{6}\n\\\\"
Comments
Leave a comment