mass,m=∫∫∫δ(x,y,z)dV=∫x=−aa∫y=−aa∫0h(h−z)dzdydx=∫x=−aa∫y=−aa[hz−2z2]0hdydx=2h2∫x=−aa∫x=−aadydx=2h2∫x=−aa[y]−aadx=ah2∫x=−aadx=ah2[x]−aa=2a2h2Now, calculate momentsMxy=∫∫∫zδdV=∫x=−aa∫y=−aa∫0hhz−z2dzdxdy=∫x=−aa∫y=−aa[2hz2−3z3]0hdydx=6h3∫x=−aa∫x=−aadydx=∫x=−aa[y]−aadx=a6h3∫x=−aadx=a6h3[x]−aa=2a26h3Myz=∫∫∫xδdV=∫x=−aa∫y=−aa∫0hx(h−z)dzdxdy=∫x=−aa∫y=−aax[hz−2z2]0hdydx=2h2∫x=−aa∫x=−aaxdydx=2h2∫x=−aax[y]−aadx=ah2∫x=−aaxdx=ah2[2x2]−aa=0Mxz=∫∫∫yδdV=∫x=−aa∫y=−aa∫0hy(h−z)dzdxdy=∫x=−aa∫y=−aay[hz−2z2]0hdydx=2h2∫x=−aa∫x=−aaydydx=2h2∫x=−aa[2y2]−aadx=ah2∫x=−aa0dx=0Center of gravity is given by(x,y,z)then,x=mMyz=2a2h20=0,y=mMxz=2a2h20=0,z=mMxy=2a2h22a26h3=6h
Comments