A = 1 2 ∫ 0 2 π r 2 d θ = a 2 2 ∫ 0 2 π ( 1 + sin θ ) 2 d θ = a 2 2 ∫ 0 2 π ( 1 + 2 sin θ + sin 2 θ ) d θ = = a 2 2 ∫ 0 2 π ( 1 + 2 sin θ + 1 − cos 2 θ 2 ) d θ = a 2 2 ( θ − 2 cos θ + θ / 2 − sin 2 θ 4 ) ∣ 0 2 π = a 2 2 ( 2 π − 2 + π − 0 ) − a 2 2 ( 0 − 2 + 0 − 0 ) = 3 a 2 π 2 A=\frac{1}{2}\int\limits_0^{2\pi}r^2d\theta = \frac{a^2}{2}\int\limits_0^{2\pi}(1+\sin \theta)^2d\theta =
\frac{a^2}{2}\int\limits_0^{2\pi}(1+2\sin\theta +\sin^2\theta)d\theta =
\\
= \frac{a^2}{2}\int\limits_0^{2\pi}(1+2\sin\theta +\frac{1-\cos2 \theta}{2})d\theta =\frac{a^2}{2}\big(
\theta -2\cos\theta +\theta /2 -\frac{\sin 2\theta}{4}
\big)\big|_0^{2\pi}=
\\
\frac{a^2}{2}(2\pi-2+\pi -0)-\frac{a^2}{2}(0-2+0-0)=\frac{3a^2\pi}{2} A = 2 1 0 ∫ 2 π r 2 d θ = 2 a 2 0 ∫ 2 π ( 1 + sin θ ) 2 d θ = 2 a 2 0 ∫ 2 π ( 1 + 2 sin θ + sin 2 θ ) d θ = = 2 a 2 0 ∫ 2 π ( 1 + 2 sin θ + 2 1 − c o s 2 θ ) d θ = 2 a 2 ( θ − 2 cos θ + θ /2 − 4 s i n 2 θ ) ∣ ∣ 0 2 π = 2 a 2 ( 2 π − 2 + π − 0 ) − 2 a 2 ( 0 − 2 + 0 − 0 ) = 2 3 a 2 π
∬ R x d A = ∫ 0 2 π ∫ 0 a ( 1 + sin θ ) x ⋅ r d r d θ = ∫ 0 2 π ∫ 0 a ( 1 + sin θ ) r 2 cos θ d r d θ = = ∫ 0 2 π 1 3 a 3 ( 1 + sin θ ) 3 cos θ d θ = a 3 12 ( 1 + sin θ ) 4 ∣ 0 2 π = 0 \iint \limits_RxdA=\int\limits_0^{2\pi}\int\limits_0^{a(1+\sin \theta)}x\cdot r\ dr \ d\theta
= \int\limits_0^{2\pi}\int\limits_0^{a(1+\sin \theta)}r^2\cos \theta \ dr \ d\theta =
\\
=\int\limits_0^{2\pi}\frac{1}{3}a^3(1+\sin \theta)^3\cos\theta \ d\theta =\frac{a^3}{12}(1+\sin \theta )^4\big|_0^{2\pi}=0 R ∬ x d A = 0 ∫ 2 π 0 ∫ a ( 1 + s i n θ ) x ⋅ r d r d θ = 0 ∫ 2 π 0 ∫ a ( 1 + s i n θ ) r 2 cos θ d r d θ = = 0 ∫ 2 π 3 1 a 3 ( 1 + sin θ ) 3 cos θ d θ = 12 a 3 ( 1 + sin θ ) 4 ∣ ∣ 0 2 π = 0
∬ R y d A = ∫ 0 2 π ∫ 0 a ( 1 + sin θ ) y ⋅ r d r d θ = ∫ 0 2 π ∫ 0 a ( 1 + sin θ ) r 2 sin θ d r d θ = = ∫ 0 2 π 1 3 a 3 ( 1 + sin θ ) 3 sin θ d θ = a 3 3 ∫ 0 2 π ( sin θ + 3 sin 2 θ + 3 sin 3 θ + sin 4 θ ) d θ = = a 3 3 ∫ 0 2 π ( 3 sin 2 θ + sin 4 θ ) d θ = a 3 3 ∫ 0 2 π ( 3 sin 2 θ + ( 1 − cos 2 θ ) sin 2 θ ) d θ = = a 3 3 ∫ 0 2 π ( 4 sin 2 θ − sin 2 θ cos 2 θ ) d θ = a 3 3 ∫ 0 2 π ( 2 ( 1 − cos 2 θ ) − 1 4 sin 2 2 θ ) d θ = = a 3 3 ∫ 0 2 π ( 2 − 2 cos 2 θ − 1 8 + 1 8 cos 4 θ ) d θ = a 3 3 ( 15 8 θ − sin 2 θ + 1 32 sin 4 θ ) ∣ 0 2 π = 15 a 3 π 12 \iint \limits_RydA=\int\limits_0^{2\pi}\int\limits_0^{a(1+\sin \theta)}y\cdot r\ dr \ d\theta
= \int\limits_0^{2\pi}\int\limits_0^{a(1+\sin \theta)}r^2\sin \theta \ dr \ d\theta =
\\
=\int\limits_0^{2\pi}\frac{1}{3}a^3(1+\sin \theta)^3\sin\theta \ d\theta =\frac{a^3}{3}\int\limits_0^{2\pi}(\sin \theta +3\sin^2\theta +3\sin^3\theta+\sin^4\theta)d\theta=
\\= \frac{a^3}{3}\int\limits_0^{2\pi}(3\sin^2\theta+\sin^4\theta)d\theta=\frac{a^3}{3}\int\limits_0^{2\pi}(3\sin^2\theta +(1-\cos^2\theta)\sin^2\theta)d\theta=
\\
=\frac{a^3}{3}\int\limits_0^{2\pi}\bigg(4\sin^2\theta -\sin^2\theta \cos^2\theta \bigg)d\theta
=\frac{a^3}{3}\int\limits_0^{2\pi}\bigg(2(1-\cos2\theta) -\tfrac{1}{4}\sin^2 2\theta \bigg)d\theta=
\\=
\frac{a^3}{3}\int\limits_0^{2\pi}\big(2-2\cos2\theta -\tfrac{1}{8}+\tfrac{1}{8}\cos 4\theta\big)d\theta=\frac{a^3}{3}\bigg(\tfrac{15}{8}\theta -\sin 2\theta +\tfrac{1}{32}\sin 4\theta\bigg)\bigg|_0^{2\pi}=\frac{15a^3\pi}{12} R ∬ y d A = 0 ∫ 2 π 0 ∫ a ( 1 + s i n θ ) y ⋅ r d r d θ = 0 ∫ 2 π 0 ∫ a ( 1 + s i n θ ) r 2 sin θ d r d θ = = 0 ∫ 2 π 3 1 a 3 ( 1 + sin θ ) 3 sin θ d θ = 3 a 3 0 ∫ 2 π ( sin θ + 3 sin 2 θ + 3 sin 3 θ + sin 4 θ ) d θ = = 3 a 3 0 ∫ 2 π ( 3 sin 2 θ + sin 4 θ ) d θ = 3 a 3 0 ∫ 2 π ( 3 sin 2 θ + ( 1 − cos 2 θ ) sin 2 θ ) d θ = = 3 a 3 0 ∫ 2 π ( 4 sin 2 θ − sin 2 θ cos 2 θ ) d θ = 3 a 3 0 ∫ 2 π ( 2 ( 1 − cos 2 θ ) − 4 1 sin 2 2 θ ) d θ = = 3 a 3 0 ∫ 2 π ( 2 − 2 cos 2 θ − 8 1 + 8 1 cos 4 θ ) d θ = 3 a 3 ( 8 15 θ − sin 2 θ + 32 1 sin 4 θ ) ∣ ∣ 0 2 π = 12 15 a 3 π
x ‾ = 1 A ∬ R x d A = 0 \overline {x}=\frac{1}{A}\iint \limits_RxdA=0 x = A 1 R ∬ x d A = 0
y ‾ = 1 A ∬ R y d A = 15 a 3 π 12 : 3 a 2 π 2 = 5 a 6 \overline {y}=\frac{1}{A}\iint \limits_RydA=\frac{15a^3\pi}{12}:\frac{3a^2\pi}{2}=\frac{5a}{6} y = A 1 R ∬ y d A = 12 15 a 3 π : 2 3 a 2 π = 6 5 a
Answers: centroid is ( 0 , 5 a 6 ) (0,\ \frac{5a}{6}) ( 0 , 6 5 a ) .
Comments