Find the centroid of the region enclosed by the cardioid r = a(1 + sin θ)
"A=\\frac{1}{2}\\int\\limits_0^{2\\pi}r^2d\\theta = \\frac{a^2}{2}\\int\\limits_0^{2\\pi}(1+\\sin \\theta)^2d\\theta =\n\\frac{a^2}{2}\\int\\limits_0^{2\\pi}(1+2\\sin\\theta +\\sin^2\\theta)d\\theta =\n\\\\\n= \\frac{a^2}{2}\\int\\limits_0^{2\\pi}(1+2\\sin\\theta +\\frac{1-\\cos2 \\theta}{2})d\\theta =\\frac{a^2}{2}\\big(\n\\theta -2\\cos\\theta +\\theta \/2 -\\frac{\\sin 2\\theta}{4}\n\\big)\\big|_0^{2\\pi}=\n\\\\\n\\frac{a^2}{2}(2\\pi-2+\\pi -0)-\\frac{a^2}{2}(0-2+0-0)=\\frac{3a^2\\pi}{2}"
"\\iint \\limits_RxdA=\\int\\limits_0^{2\\pi}\\int\\limits_0^{a(1+\\sin \\theta)}x\\cdot r\\ dr \\ d\\theta \n= \\int\\limits_0^{2\\pi}\\int\\limits_0^{a(1+\\sin \\theta)}r^2\\cos \\theta \\ dr \\ d\\theta =\n\\\\\n=\\int\\limits_0^{2\\pi}\\frac{1}{3}a^3(1+\\sin \\theta)^3\\cos\\theta \\ d\\theta =\\frac{a^3}{12}(1+\\sin \\theta )^4\\big|_0^{2\\pi}=0"
"\\iint \\limits_RydA=\\int\\limits_0^{2\\pi}\\int\\limits_0^{a(1+\\sin \\theta)}y\\cdot r\\ dr \\ d\\theta \n= \\int\\limits_0^{2\\pi}\\int\\limits_0^{a(1+\\sin \\theta)}r^2\\sin \\theta \\ dr \\ d\\theta =\n\\\\\n=\\int\\limits_0^{2\\pi}\\frac{1}{3}a^3(1+\\sin \\theta)^3\\sin\\theta \\ d\\theta =\\frac{a^3}{3}\\int\\limits_0^{2\\pi}(\\sin \\theta +3\\sin^2\\theta +3\\sin^3\\theta+\\sin^4\\theta)d\\theta=\n\\\\= \\frac{a^3}{3}\\int\\limits_0^{2\\pi}(3\\sin^2\\theta+\\sin^4\\theta)d\\theta=\\frac{a^3}{3}\\int\\limits_0^{2\\pi}(3\\sin^2\\theta +(1-\\cos^2\\theta)\\sin^2\\theta)d\\theta=\n\\\\\n=\\frac{a^3}{3}\\int\\limits_0^{2\\pi}\\bigg(4\\sin^2\\theta -\\sin^2\\theta \\cos^2\\theta \\bigg)d\\theta\n=\\frac{a^3}{3}\\int\\limits_0^{2\\pi}\\bigg(2(1-\\cos2\\theta) -\\tfrac{1}{4}\\sin^2 2\\theta \\bigg)d\\theta=\n\\\\=\n\\frac{a^3}{3}\\int\\limits_0^{2\\pi}\\big(2-2\\cos2\\theta -\\tfrac{1}{8}+\\tfrac{1}{8}\\cos 4\\theta\\big)d\\theta=\\frac{a^3}{3}\\bigg(\\tfrac{15}{8}\\theta -\\sin 2\\theta +\\tfrac{1}{32}\\sin 4\\theta\\bigg)\\bigg|_0^{2\\pi}=\\frac{15a^3\\pi}{12}"
"\\overline {x}=\\frac{1}{A}\\iint \\limits_RxdA=0"
"\\overline {y}=\\frac{1}{A}\\iint \\limits_RydA=\\frac{15a^3\\pi}{12}:\\frac{3a^2\\pi}{2}=\\frac{5a}{6}"
Answers: centroid is "(0,\\ \\frac{5a}{6})" .
Comments
Leave a comment