A billiard ball is hit and travels in a straight line. If π ππ is the distance of the ball from
its initial position at π‘ π ππ, then π = 100π‘2 + 100π‘. If the ball hits the cushion that is 39 ππ from its
initial position, at what velocity does it hit the cushion?Β
Given:
"s(t) =100 t^{2}+100 t \\\\\ns=39 \\mathrm{~cm} . \\\\\n\\Rightarrow 39=100 t^{2}+100 t \\\\\n\\Rightarrow 100 t^{2}+100 t-39=0 \\\\\n\\Rightarrow \\frac{-100 \\pm \\sqrt{(100)^{2}-4(-39)(100)}}{2(100)} \\\\\n\\Rightarrow \\frac{-100 \\pm \\sqrt{10000+15600}}{200} \\\\\n=\\frac{-100 \\pm 160}{200} \\\\\n=\\frac{-100+160}{200} \\ [\\text{t can not be negative}] \\\\ \n=\\frac{60}{200}=\\frac{3}{10}"
Velocity "(t)=\\frac{d}{dt}[100t^2+100t]=200t+100\\\\"
At "t=\\frac{3}{10}"
Velocity "=" "200(\\frac{3}{10})+100=160\\ cm\/s"
Comments
Leave a comment