1(a) Critical points of f(x)=x³+x²−x+2
steps
find f′(x)=3x2+2x−1
find X
Critical points x=−1,x=31
1(b)f(x)=x³+x²−x+2
f′(x)=3x2+2x−1
f′(x)>0:x<−1 or x> 31
f′(x)<0:−1<x<31
1(c) Coordinates of extrema points of f(x)=x³+x²−x+2
Local maxima at x=−1
coordinates =(−1,3)
local minima at x=31
=(31,2749)
1(d)Points of inflection
f"(x)=6x+2find where f"(x)=0 or undefined: x=−31
plug x=−31 into f(x)=x³+x²−x+2
=(−31,2765)
1(e)
for x intercepts replace y with 0for y intercepts replace x with 0
XIntercepts:(−2,0),YIntercepts:(0,2)
1(f) plot the points forf(x)=x³+x²−x+2
1(g) Graph f(x)=x³+x²−x+2
2(a) critical points f(x)=(4x4)−(3x3)−2x²+4x+3
find f′(x)=4x3+3x2−4x+4solve for x
x=−2x=1x=2
2(b) first Derivative test for maxima and minimum
f′(x)=4x3−3x2−4x+4
f′(x)>0:−2<x<1 or x>2
f′(x)<0:x<−2 or 1<x<2
2(c) Coordinates of extrema points
local maxima=(1,1259)local minima=(−2,−319)localminima=(2,313)
2(d) points of inflection of f(x)=(4x4)−(3x3)−2x²+4x+3
f"(x)=3x2−2x−4find where f"(x)=0 or undefined: x=31−13,x=31+13
plug x=x=31+13 and x=31−13 into f(x)=4x4−3x3−2x2+4x+3
=(31−13,−812(61+3513)+3),(31+13,812(3513−61)+3)
2(e)
for x intercepts replace y with 0for y intercepts replace x with 0
X intercepts=(−0.59732…,0),(−2.87680…,0)YIntercepts=(0,3)
2(f) plot the pointsf(x)=(4x4)−(3x3)−2x²+4x+3
2(g) graph
3(a)Critical points of f(x)=x4−8x2+9
find f′(x)=4x3−16xsolve for x
x=−2,x=0,x=2
3(b) using first derivative test
f′(x)=4x3−16xf′(x)>0:−2<x<0 or x>2f′(x)<0:x<−2 or 0<x<2
3(c) coordinates of extrema points
local maxima=(0,9)local minima=(−2,−7)local minima=(2,7)
3(d) points of inflection of f(x)=x4−8x2+9
f"(x)=12x2−16find where f"(x)=0 or undefined: x=−323,x=323
plug x=−2 into f(x)=x4−8x2+9=91
=(−323,91),(323,91)
3(e)
for x intercepts replace y with 0for y intercepts replace x with 0
XIntercepts:(4+7,0),(−4+7,0),(4−7,0),(−4−7,0),YIntercepts:(0,9)
3(f) Plot the points of f(x)=x4−8x2+9
3(g) graph
4(a) critical points of f(x)=x³+6x²+9x+3
find f′(x)=3x2+6x+9solve for x
x=−3,x=−1
4(b) f′(x)=3x2+12x2+9
f′(x)>0:x<−3 or x>−1f′(x)<0:x<x<−1
4(c) coordinates of Extrema points of f(x)=x³+6x²+9x+3
local minima=(−1,−1)local maxima=(−3,−3)
4(d) Points of inflection of f(x)=x³+6x²+9x+3
f"(x)=6x+12find where f"(x)=0 or undefined: x=−2
plug x=−2 into f(x)=x³+6x²+9x+3=1
=(−2,1)
4(e)
for x intercepts replace y with 0for y intercepts replace x with 0
XIntercepts:(−0.46791…,0),(−1.65270…,0),(−3.87938…,0),YIntercepts:(0,3)
4(f) plot the points of f(x)=x³+6x²+9x+3
4(g) Graph f(x)=x³+6x²+9x+3
Comments
Leave a comment