Answer to Question #263705 in Calculus for Alunsina

Question #263705

In numbers 1-4,

(a) find the critical numbers of the given functions

(b) using either the First or Second Derivative Test, classify whether thd function has a relative maximum or minimum at these critical numbers

(c) find the coordinates of the exterum points

(d) find the points of jnflection

(e) find the x and y - intercepts

(f) summarize the points in a table. include additional points necessary for the graph

(g) sketch the polunomial curves in graphic papers


1. f(x)=x³+x²-x+2

2. f(x)=(x4/4)-(x³/3)-2x²+4x+3

3. f(x)=x4-8x²+9

4. f(x)=x³+6x²+9x+3


1
Expert's answer
2021-11-18T06:53:48-0500

1(a) Critical points of f(x)=x³+x²x+2f(x)=x³+x²-x+2

steps

find f(x)=3x2+2x1find\ f'(x)=3x^2+2x-1

find X

Critical points x=1,x=13Critical \ points\ x=-1, x=\frac{1}{3}



1(b)f(x)=x³+x²x+2f(x)=x³+x²-x+2

f(x)=3x2+2x1f'(x)=3x^2+2x-1

f(x)>0:x<1 or x> 13f'(x)\gt 0:x\lt -1 \ or \ x\gt\ \frac{1}{3}


f(x)<0:1<x<13f'(x)\lt0:-1\lt x\lt \frac{1}{3}




1(c) Coordinates of extrema points of f(x)=x³+x²x+2of \ f(x)=x³+x²-x+2

Local maxima at x=1x=-1

coordinates =(1,3)coordinates \ = (-1,3)


local minima at x=13x=\frac{1}{3}

=(13,4927)=(\frac{1}{3},\frac{49}{27})


1(d)Points of inflection

f"(x)=6x+2find where f"(x)=0 or undefined: x=13f"(x)=6x+2\\find \ where \ f"(x)=0 \ or \ undefined: \ x=-\frac{1}{3}

plug x=13 into f(x)=x³+x²x+2plug \ x=-\frac{1}{3} \ into \ f(x)=x³+x²-x+2


=(13,6527)=(-\frac{1}{3},\frac{65}{27} )


1(e)

for x intercepts replace y with 0for y intercepts replace x with 0for \ x \ intercepts \ replace\ y\ with\ 0\\ for \ y \ intercepts \ replace\ x\ with\ 0

XIntercepts:(2,0),YIntercepts:(0,2)\mathrm{X\:Intercepts}:\:\left(-2,\:0\right),\: \\ \mathrm{Y\:Intercepts}:\:\left(0,\:2\right)


1(f) plot the points forf(x)=x³+x²x+2for f(x)=x³+x²-x+2




1(g) Graph f(x)=x³+x²x+2f(x)=x³+x²-x+2







2(a) critical points f(x)=(x44)(x33)2x²+4x+3critical \ points\ f\left(x\right)=\left(\frac{x^4}{4}\right)-\left(\frac{x^3}{3}\right)-2x²+4x+3

find f(x)=4x3+3x24x+4solve for xfind\ f'(x)=4x^3+3x^2-4x+4\\solve\ for\ x

x=2x=1x=2x=-2\\x=1\\x=2


2(b) first Derivative test for maxima and minimum

f(x)=4x33x24x+4f'(x) = 4x^3-3x^2-4x+4


f(x)>0:2<x<1 or x>2f'(x)\gt0: -2\lt x\lt1\ or \ x\gt2

f(x)<0:x<2 or 1<x<2f'(x)\lt0: x\lt-2\ or \ 1\lt x\lt2





2(c) Coordinates of extrema points

local maxima=(1,5912)local minima=(2,193)localminima=(2,133)local\ maxima = (1, \frac{59}{12})\\local\ minima=(-2,-\frac{19}{3} )\\local minima =(2,\frac{13}{3})


2(d) points of inflection of f(x)=(x44)(x33)2x²+4x+3f\left(x\right)=\left(\frac{x^4}{4}\right)-\left(\frac{x^3}{3}\right)-2x²+4x+3

f"(x)=3x22x4find where f"(x)=0 or undefined: x=1133,x=1+133f"(x)=3x^2-2x-4\\find \ where \ f"(x)=0 \ or \ undefined: \ x=\frac{1-\sqrt{13}}{3}, x=\frac{1+\sqrt{13}}{3}


plug x=x=1+133 and x=1133 into f(x)=x44x332x2+4x+3plug \ x=x=\frac{1+\sqrt{13}}{3} \ and \ x=\frac{1-\sqrt{13}}{3}\ into \ f(x)=\frac{x^4}{4}-\frac{x^3}{3}-2x^2+4x+3

=(1133,2(61+3513)81+3),(1+133,2(351361)81+3)=\left(\frac{1-\sqrt{13}}{3},\:-\frac{2\left(61+35\sqrt{13}\right)}{81}+3\right),\:\left(\frac{1+\sqrt{13}}{3},\:\frac{2\left(35\sqrt{13}-61\right)}{81}+3\right)


2(e)

for x intercepts replace y with 0for y intercepts replace x with 0for \ x \ intercepts \ replace\ y\ with\ 0\\ for \ y \ intercepts \ replace\ x\ with\ 0

X intercepts=(0.59732,0),(2.87680,0)YIntercepts=(0,3)X \ intercepts=\left(-0.59732\dots ,\:0\right),\:\left(-2.87680\dots ,\:0\right) \\\:\mathrm{Y\:Intercepts}=\:\left(0,\:3\right)


2(f) plot the pointsf(x)=(x44)(x33)2x²+4x+3f\left(x\right)=\left(\frac{x^4}{4}\right)-\left(\frac{x^3}{3}\right)-2x²+4x+3




2(g) graph





3(a)Critical points of f(x)=x48x2+9of \ f(x)=x^4-8x^2+9

find f(x)=4x316xsolve for xfind\ f'(x)=4x^3-16x\\solve\ for\ x

x=2,x=0,x=2x=-2,\:x=0,\:x=2


3(b) using first derivative test

f(x)=4x316xf(x)>0:2<x<0 or x>2f(x)<0:x<2 or 0<x<2f'(x)= 4x^3-16x\\f'(x)\gt0: -2\lt x\lt0 \ or \ x\gt2\\f'(x)\lt0: x\lt-2 \ or \ 0\lt x\lt2





3(c) coordinates of extrema points

local maxima=(0,9)local minima=(2,7)local minima=(2,7)local\ maxima = (0, 9)\\local\ minima=(-2,-7 )\\local\ minima =(2,7)



3(d) points of inflection of f(x)=x48x2+9of \ f(x)=x^4-8x^2+9

f"(x)=12x216find where f"(x)=0 or undefined: x=233,x=233f"(x)=12x^2-16\\find \ where \ f"(x)=0 \ or \ undefined: \ x=-\frac{2\sqrt{3}}{3}, x=\frac{2\sqrt{3}}{3}


plug x=2 into f(x)=x48x2+9=19plug \ x=-2\ into \ f(x)=x^4-8x^2+9=\frac{1}{9}


=(233,19),(233,19)=\quad \left(-\frac{2\sqrt{3}}{3},\:\frac{1}{9}\right),\left(\frac{2\sqrt{3}}{3},\:\frac{1}{9}\right)


3(e)

for x intercepts replace y with 0for y intercepts replace x with 0for \ x \ intercepts \ replace\ y\ with\ 0\\ for \ y \ intercepts \ replace\ x\ with\ 0

XIntercepts:(4+7,0),(4+7,0),(47,0),(47,0),YIntercepts:(0,9)\mathrm{X\:Intercepts}:\:\left(\sqrt{4+\sqrt{7}},\:0\right),\:\left(-\sqrt{4+\sqrt{7}},\:0\right),\:\left(\sqrt{4-\sqrt{7}},\:0\right),\:\left(-\sqrt{4-\sqrt{7}},\:0\right),\\ \:\mathrm{ Y\:Intercepts}:\:\left(0,\:9\right)



3(f) Plot the points of f(x)=x48x2+9of \ f(x)=x^4-8x^2+9





3(g) graph




4(a) critical points of f(x)=x³+6x²+9x+3

find f(x)=3x2+6x+9solve for xfind\ f'(x)=3x^2+6x+9\\solve\ for\ x


x=3,x=1x=-3,\:x=-1



4(b) f(x)=3x2+12x2+9f'(x)=3x^2+12x^2+9


f(x)>0:x<3 or x>1f(x)<0:x<x<1f'(x)\gt0 : x\lt-3\ or\ x\gt-1\\f'(x)\lt0: x\lt x\lt-1


4(c) coordinates of Extrema points of f(x)=x³+6x²+9x+3

local minima=(1,1)local maxima=(3,3)local\ minima = (-1, -1)\\local\ maxima=(-3,-3)


4(d) Points of inflection of f(x)=x³+6x²+9x+3

f"(x)=6x+12find where f"(x)=0 or undefined: x=2f"(x)=6x+12\\find \ where \ f"(x)=0 \ or \ undefined: \ x=-2


plug x=2 into f(x)=x³+6x²+9x+3=1plug \ x=-2\ into \ f(x)=x³+6x²+9x+3=1


=(2,1)=\left(-2,\:1\right)



4(e)

for x intercepts replace y with 0for y intercepts replace x with 0for \ x \ intercepts \ replace\ y\ with\ 0\\ for \ y \ intercepts \ replace\ x\ with\ 0

XIntercepts:(0.46791,0),(1.65270,0),(3.87938,0),YIntercepts:(0,3)\mathrm{X\:Intercepts}:\:\left(-0.46791\dots ,\:0\right),\:\left(-1.65270\dots ,\:0\right),\:\left(-3.87938\dots ,\:0\right),\:\\ \mathrm{Y\:Intercepts}:\:\left(0,\:3\right)



4(f) plot the points of f(x)=x³+6x²+9x+3




4(g) Graph f(x)=x³+6x²+9x+3






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment