Answer to Question #263517 in Calculus for Buxcity

Question #263517

Determining the proportional rates of growth for the following function: 0.015531t t Pe Derive a general expression for the proportional rate of growth. (1 mark) Calculate the proportional rates of growth at t = 5.

1
Expert's answer
2021-11-10T15:42:23-0500

Solution;

Given;

"P(t)=0.01553t+P_0e^t"

The proportional rate of growth is the derivative of the function;

"\\frac{dP}{dt}=0.015531+P_0e^t" ....(1)

When there is no growth the rate of growth is 0;

"\\frac{dP}{dt}=0=0.015531+P_0"

"P_0=-0.015531"

Now equation (1) becomes;

"\\frac{dP}{dt}=0.015531-0.015531e^t"

Now ,rate at t=5.

By direct substitution;

"\\frac{dP}{dt}=0.015531-0.015531e^5"

"\\frac{dP}{dt}=-2.2894"

(Negative rate shows that the population is decreasing)





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS