Question #263114

Find the critical points of the function f(x, y) = (x2+5y2)e1-2x^2-2y^2 and use the second

derivative test to classify them as local maxima, local minima, or saddle point


1
Expert's answer
2021-11-09T14:51:51-0500
fx=(2x4x(x2+5y2))e12x22y2\dfrac{\partial f}{\partial x}=(2x-4x(x^2+5y^2))e^{1-2x^2-2y^2}

=(2x4x320xy2)e12x22y2=(2x-4x^3-20xy^2)e^{1-2x^2-2y^2}



fy=(10y4y(x2+5y2))e12x22y2\dfrac{\partial f}{\partial y}=(10y-4y(x^2+5y^2))e^{1-2x^2-2y^2}

=(10y4x2y20y3)e12x22y2=(10y-4x^2y-20y^3)e^{1-2x^2-2y^2}

Find the critical point(s)


{fx=0fy=0\begin{cases} \dfrac{\partial f}{\partial x}=0 \\ \\ \dfrac{\partial f}{\partial y}=0 \end{cases}

=>{(2x4x(x2+5y2))e12x22y2=0(10y4y(x2+5y2))e12x22y2=0=>\begin{cases} (2x-4x(x^2+5y^2))e^{1-2x^2-2y^2}=0 \\ \\ (10y-4y(x^2+5y^2))e^{1-2x^2-2y^2}=0 \end{cases}

=>{2x(12(x2+5y2))=02y(52(x2+5y2))=0=>\begin{cases} 2x(1-2(x^2+5y^2))=0 \\ \\ 2y(5-2(x^2+5y^2))=0 \end{cases}


{x=05y(12y2)=0\begin{cases} x=0 \\ \\ 5y(1-2y^2)=0 \end{cases}

(0,0),(0,22),(0,22)(0, 0), (0, -\dfrac{\sqrt{2}}{2}), (0, \dfrac{\sqrt{2}}{2})


{y=0x(12x2)=0\begin{cases} y=0 \\ \\ x(1-2x^2)=0 \end{cases}

(0,0),(22,0),(22,0)(0, 0), ( -\dfrac{\sqrt{2}}{2},0), (\dfrac{\sqrt{2}}{2},0)



xy0xy\not=0


{12(x2+5y2)=052(x2+5y2)=0=>{2(x2+5y2)=12(x2+5y2)=5\begin{cases} 1-2(x^2+5y^2)=0 \\ \\ 5-2(x^2+5y^2)=0 \end{cases}=>\begin{cases} 2(x^2+5y^2)=1 \\ \\ 2(x^2+5y^2)=5 \end{cases}

This system has no solution.


Critical points:


(22,0),(0,22),(0,0),(0,22),(22,0)\big( -\dfrac{\sqrt{2}}{2},0\big),\big( 0,-\dfrac{\sqrt{2}}{2}\big), \big(0, 0\big), \big(0,\dfrac{\sqrt{2}}{2}\big),\big(\dfrac{\sqrt{2}}{2},0\big)

2fx2=(212x220y2)e12x22y2\dfrac{\partial^2 f}{\partial x^2}=(2-12x^2-20y^2)e^{1-2x^2-2y^2}




4x(2x4x320xy2)e12x22y2-4x(2x-4x^3-20xy^2)e^{1-2x^2-2y^2}


2fxy=40xye12x22y2\dfrac{\partial^2 f}{\partial x\partial y}=-40xye^{1-2x^2-2y^2}




4y(2x4x320xy2)e12x22y2-4y(2x-4x^3-20xy^2)e^{1-2x^2-2y^2}

2fy2=(104x260y2)e12x22y2\dfrac{\partial^2 f}{\partial y^2}=(10-4x^2-60y^2)e^{1-2x^2-2y^2}




4y(2x4x320xy2)e12x22y2-4y(2x-4x^3-20xy^2)e^{1-2x^2-2y^2}

(22,0)\big( -\dfrac{\sqrt{2}}{2},0\big)


2fx2(2/2,0)=2604+4=4\dfrac{\partial^2 f}{\partial x^2}|_{(-\sqrt{2}/2,0)}=2-6-0-4+4=-4

2fxy(2/2,0)=0\dfrac{\partial^2 f}{\partial x\partial y}|_{(-\sqrt{2}/2,0)}=0

2fy2(2/2,0)=102=8\dfrac{\partial^2 f}{\partial y^2}|_{(-\sqrt{2}/2,0)}=10-2=8

(0,22)\big( 0,-\dfrac{\sqrt{2}}{2}\big)


2fx2(0,2/2)=20100=8\dfrac{\partial^2 f}{\partial x^2}|_{(0,-\sqrt{2}/2)}=2-0-10-0=-8

2fxy(0,2/2)=0\dfrac{\partial^2 f}{\partial x\partial y}|_{(0,-\sqrt{2}/2)}=0


2fy2(0,2/2)=100300=20\dfrac{\partial^2 f}{\partial y^2}|_{(0,-\sqrt{2}/2)}=10-0-30-0=-20

(0,0)\big( 0,0\big)


2fx2(0,0)=2e\dfrac{\partial^2 f}{\partial x^2}|_{(0,0)}=2e

2fxy(0,0)=0\dfrac{\partial^2 f}{\partial x\partial y}|_{(0,0)}=0

2fy2(0,0)=10e\dfrac{\partial^2 f}{\partial y^2}|_{(0,0)}=10e

(0,22)\big(0,\dfrac{\sqrt{2}}{2}\big)


2fx2(0,2/2)=20100=8\dfrac{\partial^2 f}{\partial x^2}|_{(0,\sqrt{2}/2)}=2-0-10-0=-8

2fxy(0,2/2)=0\dfrac{\partial^2 f}{\partial x\partial y}|_{(0,\sqrt{2}/2)}=0


2fy2(0,2/2)=100300=20\dfrac{\partial^2 f}{\partial y^2}|_{(0,\sqrt{2}/2)}=10-0-30-0=-20

(22,0)\big( \dfrac{\sqrt{2}}{2},0\big)


2fx2(2/2,0)=2604+4=4\dfrac{\partial^2 f}{\partial x^2}|_{(\sqrt{2}/2,0)}=2-6-0-4+4=-4

2fxy(2/2,0)=0\dfrac{\partial^2 f}{\partial x\partial y}|_{(\sqrt{2}/2,0)}=0

2fy2(2/2,0)=102=8\dfrac{\partial^2 f}{\partial y^2}|_{(\sqrt{2}/2,0)}=10-2=8

a)

(22,0)\big( -\dfrac{\sqrt{2}}{2},0\big)


D=4008=32<0D=\begin{vmatrix} -4 & 0 \\ 0 & 8 \end{vmatrix}=-32<0

Point (22,0)\big( -\dfrac{\sqrt{2}}{2},0\big) is a saddle point.



(22,0)\big( \dfrac{\sqrt{2}}{2},0\big)


D=4008=32<0D=\begin{vmatrix} -4 & 0 \\ 0 & 8 \end{vmatrix}=-32<0

Point (22,0)\big( \dfrac{\sqrt{2}}{2},0\big) is a saddle point.


b)

(0,22)\big( 0,-\dfrac{\sqrt{2}}{2}\big)


D=80020=160>0D=\begin{vmatrix} -8 & 0 \\ 0 & -20 \end{vmatrix}=160>02fx2(0,2/2)=8<0\dfrac{\partial^2 f}{\partial x^2}|_{(0,-\sqrt{2}/2)}=-8<0

Point (0,22)\big(0, -\dfrac{\sqrt{2}}{2}\big) is a local maximum.


(0,22)\big( 0,\dfrac{\sqrt{2}}{2}\big)


D=80020=160>0D=\begin{vmatrix} -8 & 0 \\ 0 & -20 \end{vmatrix}=160>02fx2(0,2/2)=8<0\dfrac{\partial^2 f}{\partial x^2}|_{(0,\sqrt{2}/2)}=-8<0

Point (0,22)\big(0, -\dfrac{\sqrt{2}}{2}\big) is a local maximum.


c)

(0,0)\big( 0,0\big)


D=2e0010e=20e2>0D=\begin{vmatrix} 2e & 0 \\ 0 & 10e \end{vmatrix}=20e^2>02fx2(0,0)=2e>0\dfrac{\partial^2 f}{\partial x^2}|_{(0,0)}=2e>0

Point (0,0)\big(0, 0\big) is a local minimum.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS