1.1 Domain of the function is the set of all values that argument might take. So
f(x)=∣1−3x∣1 , then ∣1−3x∣=0⟹x=31
Df:x∈R/ {31}
g(x)=log313x−21−log3x , then 3x−2>0 and x>0
Dg:x∈(32;+∞)
1.2 ∣1−3x∣1>2⟹∣1−3x∣<0.5⟹(1−3x<0.5)∧(1−3x>−0.5)⟹x∈(61;21)
Considering the domain, the answer is x∈(61;21) / {31}
1.3 log313x−21−log3x≥0⟹−log33x−21−log3x≥0⟹−(log33x−21+log3x)≥0
−(log33x−21+log3x)≥0⟹log33x−21+log3x≤0⟹log33x−2x≤0⟹3x−2x≤1
3x−2x−3x+2≤0⟹3x−2−2x+2≤0⟹((−2x+2≤0)∧(3x−2>0))∨((−2x+2≥0)∧(3x−2<0))⟹((x≥1)∧(x>32))∨((x≤1)∧(x<32))⟹(x≥1)∨(x<32)
Considering the domain, the answer is x∈[1;+∞)∪(−∞;32)
Comments
Leave a comment