Answer to Question #263373 in Calculus for Sabelo Xulu

Question #263373

The functions f and g are defined by f(x)=1/|1-3x| and g(x)=log1/3(1 /3x-2)-log3(x) respectively

1.1. Write down the sets Df(the domain of f) and Dg(the domain of g)

1.2. Solve the inequality f(x) greater than 2 for x\in Df

1.3. Solve the inequality g(x) greater or equals to 0 for x\in Dg

Hint: use the change of base formula


1
Expert's answer
2021-11-10T10:15:22-0500

1.1 Domain of the function is the set of all values that argument might take. So

f(x)=113xf(x)={\frac 1 {|1-3x|}} , then 13x0    x13|1 - 3x| \not=0\implies x \not ={\frac 1 3}

Df:xR/D{\scriptscriptstyle f}:x \isin R / {13{\frac 1 3}}

g(x)=log1313x2log3xg(x) = \log _{{\frac 1 3}} {{\frac 1 {3x-2}}}-\log _{3} x , then 3x2>03x-2>0 and x>0x>0

Dg:x(23;+)D{\scriptscriptstyle g}:x \isin ({\frac 2 3};+\infty)


1.2 113x>2    13x<0.5    (13x<0.5)(13x>0.5)    x(16;12){\frac 1 {|1-3x|}}>2\implies |1-3x|<0.5\implies (1-3x < 0.5)\land (1-3x>-0.5)\implies x \in ({\frac 1 6}; {\frac 1 2})

Considering the domain, the answer is x(16;12)x \in ({\frac 1 6}; {\frac 1 2}) / {13{\frac 1 3}}


1.3 log1313x2log3x0    log313x2log3x0    (log313x2+log3x)0\log _{{\frac 1 3}} {{\frac 1 {3x-2}}}-\log _{3} x≥0\implies -\log _{3} {{\frac 1 {3x-2}}}-\log _{3} x≥0\implies-(\log _{3} {{\frac 1 {3x-2}}}+\log _{3} x)≥0

(log313x2+log3x)0    log313x2+log3x0    log3x3x20    x3x21-(\log _{3} {{\frac 1 {3x-2}}}+\log _{3} x)≥0\implies \log _{3} {{\frac 1 {3x-2}}}+\log _{3} x≤0\implies \log _{3} {{\frac x {3x-2}}} ≤0\implies {\frac x {3x-2}}≤1

x3x+23x20    2x+23x20    ((2x+20)(3x2>0))((2x+20)(3x2<0))    ((x1)(x>23))((x1)(x<23))    (x1)(x<23){\frac {x-3x+2} {3x-2}}≤0 \implies {\frac {-2x+2} {3x-2}}≤0\implies ((-2x+2≤0)\land (3x-2>0))\lor((-2x+2 ≥0)\land( 3x-2 < 0))\implies ((x≥1)\land (x>{\frac 2 3}))\lor ((x≤1)\land (x<{\frac 2 3}))\implies (x≥1)\lor (x<{\frac 2 3})

Considering the domain, the answer is x[1;+)(;23)x\isin [1;+\infty) ∪ (-\infty;{\frac 2 3})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment