The graph of the parametric equations is called a cycloid.
x=θ-sinθ and y=1-cosθ for 0≤θ≤2π
(a) find dy/dx
(b) find an equation of the tangent to the cycloid at the point where θ=π/3
(c) at what point is the tangent horizontal?
(d) graph the cycloid and the tangent lines in parts (b) and (c)
a)
dy/dx=dydθdθdxdy/dx=\frac{dy}{d\theta}\frac{d\theta}{dx}dy/dx=dθdydxdθ
dy/dθ=sinθdy/d\theta=sin\thetady/dθ=sinθ
dx/dθ=1−cosθdx/d\theta=1-cos\thetadx/dθ=1−cosθ
dy/dx=sinθ1−cosθdy/dx=\frac{sin\theta}{1-cos\theta}dy/dx=1−cosθsinθ
b)
equation of the tangent:
y−y0=f′(x0)(x−x0)y-y_0=f'(x_0)(x-x_0)y−y0=f′(x0)(x−x0)
then, θ=π/3:
1−cosθ−(1−cos(π/3))=sin(π/3)1−cos(π/3)(θ−sinθ−(π/3−sin(π/3)))1-cosθ-(1-cos(\pi/3))=\frac{sin(\pi/3)}{1-cos(\pi/3)}(θ-sinθ-(\pi/3-sin(\pi/3)))1−cosθ−(1−cos(π/3))=1−cos(π/3)sin(π/3)(θ−sinθ−(π/3−sin(π/3)))
1/2−cosθ=3(θ−sinθ−π/3+3/2)1/2-cosθ=\sqrt3(θ-sinθ-\pi/3+\sqrt3/2)1/2−cosθ=3(θ−sinθ−π/3+3/2)
cosθ+3(θ−sinθ)=π/3−1cosθ+\sqrt3(θ-sinθ)=\pi/\sqrt3-1cosθ+3(θ−sinθ)=π/3−1
c)
the tangent horizontal if f′(x)=0f'(x)=0f′(x)=0
so,
sinθ1−cosθ=0\frac{sin\theta}{1-cos\theta}=01−cosθsinθ=0
sinθ=0sin\theta=0sinθ=0
cosθ≠1cos\theta\neq 1cosθ=1
θ=π\theta=\piθ=π
y(π)=2,x(π)=πy(\pi)=2,x(\pi)=\piy(π)=2,x(π)=π
d)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments