Answer to Question #263706 in Calculus for Alunsina

Question #263706

In numbers 5-7,

(a) make a table of values of t, x and y based on the specified intervals of the given parametic equations

(b) sketch the plane curve defined by the given parametic equations at the specified interval

(c) find dy/dx without eliminating the parameter t. simplify your answers

(d) find an equation such that the parameter t is eliminated


5. x=t²+1 and y=t³-2 for 0≤t≤2

6. x=sqrt(5t) and y=2t+2 for 0≤t≤5

7. x=cost and y=2-cos²t for 0≤t≤π


1
Expert's answer
2021-11-17T00:34:24-0500

5.

(a)


"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c}\n t & x & y \\\\ \\hline\n 0 & 1 & -2 \\\\\n 0.2 & 1.04 & -1.992 \\\\ \n 0.4 & 1.16 & -1.936 \\\\ \n 0.6 & 1.36 & -1.784 \\\\ \n 0.8 & 1.64 & -1.488 \\\\ \n 1 & 2 & -1 \\\\ \n 1.2 & 2.44 & -0.272 \\\\\n 1.4 & 2.96 & 0.744\\\\ \n 1.6 & 3.56 & 2.096 \\\\ \n 1.8 & 4.24 & 3.832 \\\\ \n 2 & 5 & 6 \\\\ \n\\end{array}"

(b)




(c)


"\\dfrac{dy}{dx}=\\dfrac{dy\/dt}{dx\/dt}=\\dfrac{3t^2}{2t}=\\dfrac{3}{2}t, t\\not=0"

(d)


"t=\\sqrt{x-1}, t\\geq0"

"t=-\\sqrt{x-1}, t<0"

"y(x)= \\begin{cases}\n -(x-1)^{3\/2}-2 &t<0 \\\\\n (x-1)^{3\/2}-2 &t\\geq0 \n\\end{cases}"

6.


(a)


"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c}\n t & x & y \\\\ \\hline\n 0 & 0 & 2 \\\\\n 0.5 & \\sqrt{2.5} & 3 \\\\ \n 1 & \\sqrt{5} & 4 \\\\ \n 1.5 & \\sqrt{7.5} & 5 \\\\ \n 2 & \\sqrt{10} & 6 \\\\ \n 2.5 & \\sqrt{12.5} & 7 \\\\ \n 3 & \\sqrt{15} & 8 \\\\\n 3.5 & \\sqrt{17.5} & 9\\\\ \n 4 & \\sqrt{20} & 10 \\\\ \n 4.5 & \\sqrt{22.5} & 11 \\\\ \n 5 & 5 & 12 \\\\ \n\\end{array}"


(b)



(c)


"\\dfrac{dy}{dx}=\\dfrac{dy\/dt}{dx\/dt}=\\dfrac{2}{\\dfrac{5}{2\\sqrt{t}}}=\\dfrac{4}{5}\\sqrt{t}, t>0"

(d)


"t=\\dfrac{x^2}{5}, x\\geq0"

"y(x)=\\dfrac{2}{5}x^2+2, x\\geq0"

7.

(a)


"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c}\n t & x & y \\\\ \\hline\n 0 & 1 & 1 \\\\\n \\pi\/6 & \\sqrt{3}\/2 & 5\/4 \\\\ \n \\pi\/4 & \\sqrt{2}\/2 & 3\/2 \\\\ \n \\pi\/3 & 1\/2 & 7\/4 \\\\ \n \\pi\/2 & 0 & 2 \\\\ \n 2\\pi\/3 & -1\/2 & 7\/4 \\\\ \n 3\\pi\/4 & -\\sqrt{2}\/2 & 3\/2 \\\\\n 5\\pi\/6 & -\\sqrt{3}\/2 & 5\/4\\\\ \n \\pi & -1 & 1 \\\\ \n\\end{array}"

(b)




(c)


"\\dfrac{dy}{dx}=\\dfrac{dy\/dt}{dx\/dt}=\\dfrac{2\\sin t\\cos t}{-\\sin t}=-2\\cos t, t\\not=\\pi n, n\\in \\Z"

(d)

"y(x)=2-x^2, -1\\leq x\\leq1"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS