f(x)=⎩⎨⎧1+2x,x≤03x−2,0<x≤12x2−1,x>1
1) x=0
x→0−0limf(x)=x→0−0lim(1+2x)=1
x→0+0limf(x)=x→0+0lim(3x−2)=−2
x→0−0limf(x)=x→0+0limf(x)
f(x) is discontinuous at x=0
2) x=1
x→1−0limf(x)=x→1−0lim(3x−2)=1
x→1+0limf(x)=x→1+0lim(2x2−1)=1
x→1−0limf(x)=x→1+0limf(x)=f(1)
f(x) is continuous at x=1
Comments