Question #258927

Let f(x) =


1 + 2x, x <= 0


3x - 2, 0 < x <= 1 2x ^ 2 - 1, x > 1


Check whether f is discontinuous. If yes, find where? ii) Give a rough sketch of the graph of f

1
Expert's answer
2021-11-02T15:02:29-0400

f(x)={1+2x,x03x2,0<x12x21,x>1f(x)=\begin{cases} 1+2x,\qquad x\leq 0 \\ 3x-2,\qquad 0<x\leq 1 \\2x^2-1,\qquad x>1 \end{cases}

1) x=0x=0

limx00f(x)=limx00(1+2x)=1\lim\limits_{x\rightarrow 0-0}f( x)= \lim\limits_{x\rightarrow 0-0}(1+2x)=1

limx0+0f(x)=limx0+0(3x2)=2\lim\limits_{x\rightarrow 0+0}f( x)= \lim\limits_{x\rightarrow 0+0}(3x-2)=-2


limx00f(x)limx0+0f(x)\lim\limits_{x\rightarrow 0-0}f(x)\neq \lim\limits_{x\rightarrow 0+0}f(x)


f(x)f(x) is discontinuous at x=0x=0


2) x=1x=1

limx10f(x)=limx10(3x2)=1\lim\limits_{x\rightarrow 1-0}f( x)= \lim\limits_{x\rightarrow 1-0}(3x-2)=1

limx1+0f(x)=limx1+0(2x21)=1\lim\limits_{x\rightarrow 1+0}f( x)= \lim\limits_{x\rightarrow 1+0}(2x^2-1)=1


limx10f(x)=limx1+0f(x)=f(1)\lim\limits_{x\rightarrow 1-0}f(x)=\lim\limits_{x\rightarrow 1+0}f(x)=f(1)


f(x)f(x) is continuous at x=1x=1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS