Let f(x) =
1 + 2x, x <= 0
3x - 2, 0 < x <= 1 2x ^ 2 - 1, x > 1
Check whether f is discontinuous. If yes, find where? ii) Give a rough sketch of the graph of f
"f(x)=\\begin{cases}\n1+2x,\\qquad x\\leq 0\n\\\\\n3x-2,\\qquad 0<x\\leq 1\n\\\\2x^2-1,\\qquad x>1\n\\end{cases}"
1) "x=0"
"\\lim\\limits_{x\\rightarrow 0-0}f( x)= \\lim\\limits_{x\\rightarrow 0-0}(1+2x)=1"
"\\lim\\limits_{x\\rightarrow 0+0}f( x)= \\lim\\limits_{x\\rightarrow 0+0}(3x-2)=-2"
"\\lim\\limits_{x\\rightarrow 0-0}f(x)\\neq \\lim\\limits_{x\\rightarrow 0+0}f(x)"
"f(x)" is discontinuous at "x=0"
2) "x=1"
"\\lim\\limits_{x\\rightarrow 1-0}f( x)= \\lim\\limits_{x\\rightarrow 1-0}(3x-2)=1"
"\\lim\\limits_{x\\rightarrow 1+0}f( x)= \\lim\\limits_{x\\rightarrow 1+0}(2x^2-1)=1"
"\\lim\\limits_{x\\rightarrow 1-0}f(x)=\\lim\\limits_{x\\rightarrow 1+0}f(x)=f(1)"
"f(x)" is continuous at "x=1"
Comments
Leave a comment