Question #258780
  1. Calculate the turning points of the function y=sin3t using differential calculus
  2. Show which are maxima, minima or points of inflexion using the second derivative
1
Expert's answer
2021-11-04T09:19:44-0400

Domain of the function is not given, so let us take

t(0,2)t\in (0,2)

y=sin3ty=sin3t

To find the maximum and minima, we need to find the yy\prime and set this to zero.


y=sin3ty = sin 3t

differentiate with respect to tt


y=3cos3t=0y\prime = 3 cos 3t = 03t=π2,3π23t = \frac {\pi}{2}, \frac {3\pi}{2}t=π6;π2=0.52;1.57t = \frac {\pi}{6}; \frac {\pi}{2} = 0.52; 1.57

Now,


y=9sin3ty\prime\prime = - 9 sin 3t

y(0.52)=9sin3(0.52)=9sin(1.56)=8.999y(0.52)<0So,y has maximum at t=0.52y\prime\prime (0.52)=-9sin3(0.52)=-9sin(1.56)=-8.999 \\y\prime\prime (0.52) < 0\\ So, y \space has \space maximum \space at \space t = 0.52

Again,

y(1.57)=9sin3(1.57)=9sin(4.71)=8.999y(1.57)>0So,y has minimum at t=1.57y\prime\prime (1.57)=-9sin3(1.57)=-9sin(4.71)=8.999 \\y\prime\prime (1.57) > 0\\ So, y \space has \space minimum \space at \space t = 1.57

To find the Inflection point set y=0y\prime\prime = 0

9sin3t=0sin3t=0 at 3t=π- 9 sin 3t = 0\\ sin 3t = 0 \space at \space 3t = \pi or 3.14

inflection point is at t=1.04t = 1.04

Now plotting the graph of function to show the turning point , maxima ,minima



Turning point of function is t = 1.04 for t(0,2)t\in (0,2) . Turning point of function is the point where concavity of function is changes. It is also called point of inflection.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS