Differentiate both sides with respect to "x"
"\\dfrac{d}{dx}(x^3+4xy^2+5y^3)=\\dfrac{d}{dx}(1)" Use the Chain Rule
"3x^2+4y^2+8xy\\dfrac{dy}{dx}+15y^2\\dfrac{dy}{dx}=0" Solve for "\\dfrac{dy}{dx}"
"\\dfrac{dy}{dx}=-\\dfrac{3x^2+4y^2}{8xy+15y^2}" At "(2,-1)"
"\\dfrac{dy}{dx}|_{(2,-1)}=-\\dfrac{3(2)^2+4(-1)^2}{8(2)(-1)+15(-1)^2}=16"
"\\dfrac{dy}{dx}|_{(2,-1)}=16"
Comments
Leave a comment