Question #258402

.A geometric series with first term 3 converges to the sum of 2. Find the common ratio of the series.


1
Expert's answer
2021-11-01T16:18:25-0400

let a=3a=3 be the 1st term and r be the common ratio ,so:

S=a/(1r)S\infin=a/(1-r)

S=3/(1r)S\infin=3/(1-r)

S=2S\infin=2 \therefore

2=3/(1r)2=3/(1-r)

multiply both sides by (1r)(1-r)

2(1r)=32(1-r)=3

22r=32-2r=3

2r=1-2r=1

\therefore r=0.5r=-0.5 is the correct answer.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS