Question #258156

Use Taylor's formula to find a quadratic approximation of f(x, y) = cos cos y at the origin. Estimate the error in the approximation f|x| <= 0.1 and |y| <= 0.1


1
Expert's answer
2021-11-01T13:27:31-0400

Given function is f(x,y)=(cos x)(cos y)f(x,y)=(cos \space x)(cos \space y)

The quadratic approximation of f(X,y) at origin is

f(X,y)=f(0,0)+xfx(0,0)+yfy(0,0)+12[x2fxx(0,0)+2xyfXY(0,0)+y2fyy(0,0)]....(1)f(X,y)=f(0,0)+xf_x(0,0)+yf_y(0,0)+\frac{1}{2}[x^2f_{xx}(0,0)+2xyf_{XY}(0,0)+y^2f_{yy}(0,0)]....(1)

Compute the value of f(0,0) as follows

f(X,y)=cos x cos yf(0,0)=cos (0) cos (0)=(1)(1)=1f(X,y)=cos\space x\space cos\space y\\ f(0,0)=cos\space (0)\space cos\space (0)\\=(1)(1)\\=1

Compute the value of fx(0,0)f_x(0,0) as follows

fx(X,y)=sin(X)fx(0,0)=sin(0)=0f_x(X,y)=-sin(X)\\f_x(0,0)=-sin(0)\\=0

Compute the value of fxx(0,0)f_{xx}(0,0) as follows

fxx(X,y)=cos(X)fxx(0,0)=cos(0)=0f_{xx}(X,y)=-cos(X)\\f_{xx}(0,0)=-cos(0)\\=0

Compute the value of fy(0,0)f_y(0,0) as follows

fy(X,y)=sin(y)fy(0,0)=sin(0)=0f_y(X,y)=-sin(y)\\f_y(0,0)=-sin(0)\\=0

Compute the value of fyy(0,0)f_{yy}(0,0) as follows

fyy(X,y)=cos(y)fyy(0,0)=cos(0)=1f_{yy}(X,y)=-cos (y)\\f_{yy}(0,0)=-cos(0)\\=1

Compute the value of fxy(0,0)f_{xy}(0,0) as follows

f0,0(X,y)=sin(X)sin(y)fXy(0,0)=sin(0)sin(0)=0f_{0,0}(X,y)=sin(X)sin(y)\\f_{Xy}(0,0)=sin(0)sin(0)\\=0

Now substitute the above values in equition 1

f(X,y)=1+0+0+12(x2+0y2)=1x22y22f(X,y)=1+0+0+\frac{1}{2}(-x^2+0-y^2)\\=1-\frac{x^2}{2}-\frac{y^2}{2}

Compute the error in approximation if fx0.1 and y0.1f|x| ≤ 0.1 \space and\space |y| ≤ 0.1 as follows

E(X,y)=16(x3fxxx+3x2yfxxy+3xy2fxyy+y3fyyy)E(X,y)= \frac{1}{6}(x^3f_{xxx}+3x^2yf_{xxy}+3xy^2f_{xyy}+y^3f_{yyy})

Since the partial derivatives are given f(X,y) are the multiples of sines and cosines function the absolute value of the derivatives will always be less than or equal to 1. Therefore

E(X,y)16((0.1)3+3(0.1)3+3(0.1)3+(0.1)3)0.00134E(X,y)≤ \frac{1}{6}((0.1)^3+3(0.1)^3+3(0.1)^3+(0.1)^3)≤ 0.00134


Thus the error in the approximation is E(X,y)0.00134E(X,y)≤ 0.00134


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS