Question #258149

A space probe in the shape of the sphere x ^ 2 + y ^ 2 + z ^ 2 = 30 enters Earth's atmosphere and its surface begins to heat. After 1 hour, the temperature at the point (z. y. :) on the probe's surface is T(x, y, z) = x - 2y + 5z Find the hottest point on the probe's surface.


1
Expert's answer
2021-11-11T18:43:01-0500

Maximize T(x,y,z)=x-2y+5z

Subject to g(x,y,z)=x2+y2+z2-30=0

L=TλgL=T-\lambda g

=x2y+5zλ(x2+y2+z230)=x-2y+5z-\lambda(x^2+y^2+z^2-30)

Lx=12λx=0    2λx=1    x=12λL_x=1-2\lambda x=0 \implies2\lambda x=1\implies x=\frac{1}{2\lambda}

Ly=22λy=0    2λy=2    y=1λL_y=-2-2\lambda y=0\implies 2\lambda y=-2\implies y=\frac{-1}{\lambda}

Lz=52zλ=0    2λz=5    z=52λL_z=5-2z\lambda=0\implies 2\lambda z=5\implies z=\frac{5}{2\lambda}

g(x,y,z)=(12λ)2+(12λ)2+(52λ)230=0g(x,y,z)=(\frac{1}{2\lambda})^2+(\frac{-1}{2\lambda})^2+(\frac{5}{2\lambda})^2-30=0

14λ2+1λ2+254λ2=30\frac{1}{4\lambda^2}+\frac{1}{\lambda^2}+\frac{25}{4\lambda^2}=30

1+4+254λ2=30\frac{1+4+25}{4\lambda^2}=30

294λ2=30\frac{29}{4\lambda^2}=30

4λ230=294\lambda^2*30=29

λ2=29430\lambda^2=\frac{29}{4*30} =29120\frac{29}{120}

λ=29120=\lambda=\sqrt{\frac{29}{120}}= 0.4916

λ=0.4916,x=12λ=1.0171,y=1λ=2.0342,z=52λ=5.0854\lambda=0.4916, x=\frac{1}{2\lambda}=1.0171,y=\frac{-1}{\lambda}=-2.0342,z=\frac{5}{2\lambda}=5.0854

T(1.0171,2.0342,5.0854)=(1.01712(2.0342)+5(5.0854)T(1.0171,-2.0342,5.0854)=(1.0171-2(-2.0342)+5(5.0854)

=30.5125

Hottest point on the probe surface is (1.0171,-2.0342,5.0854)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS