Maximize T(x,y,z)=x-2y+5z
Subject to g(x,y,z)=x2 +y2 +z2 -30=0
L = T − λ g L=T-\lambda g L = T − λ g
= x − 2 y + 5 z − λ ( x 2 + y 2 + z 2 − 30 ) =x-2y+5z-\lambda(x^2+y^2+z^2-30) = x − 2 y + 5 z − λ ( x 2 + y 2 + z 2 − 30 )
L x = 1 − 2 λ x = 0 ⟹ 2 λ x = 1 ⟹ x = 1 2 λ L_x=1-2\lambda x=0 \implies2\lambda x=1\implies x=\frac{1}{2\lambda} L x = 1 − 2 λ x = 0 ⟹ 2 λ x = 1 ⟹ x = 2 λ 1
L y = − 2 − 2 λ y = 0 ⟹ 2 λ y = − 2 ⟹ y = − 1 λ L_y=-2-2\lambda y=0\implies 2\lambda y=-2\implies y=\frac{-1}{\lambda} L y = − 2 − 2 λ y = 0 ⟹ 2 λ y = − 2 ⟹ y = λ − 1
L z = 5 − 2 z λ = 0 ⟹ 2 λ z = 5 ⟹ z = 5 2 λ L_z=5-2z\lambda=0\implies 2\lambda z=5\implies z=\frac{5}{2\lambda} L z = 5 − 2 z λ = 0 ⟹ 2 λ z = 5 ⟹ z = 2 λ 5
g ( x , y , z ) = ( 1 2 λ ) 2 + ( − 1 2 λ ) 2 + ( 5 2 λ ) 2 − 30 = 0 g(x,y,z)=(\frac{1}{2\lambda})^2+(\frac{-1}{2\lambda})^2+(\frac{5}{2\lambda})^2-30=0 g ( x , y , z ) = ( 2 λ 1 ) 2 + ( 2 λ − 1 ) 2 + ( 2 λ 5 ) 2 − 30 = 0
1 4 λ 2 + 1 λ 2 + 25 4 λ 2 = 30 \frac{1}{4\lambda^2}+\frac{1}{\lambda^2}+\frac{25}{4\lambda^2}=30 4 λ 2 1 + λ 2 1 + 4 λ 2 25 = 30
1 + 4 + 25 4 λ 2 = 30 \frac{1+4+25}{4\lambda^2}=30 4 λ 2 1 + 4 + 25 = 30
29 4 λ 2 = 30 \frac{29}{4\lambda^2}=30 4 λ 2 29 = 30
4 λ 2 ∗ 30 = 29 4\lambda^2*30=29 4 λ 2 ∗ 30 = 29
λ 2 = 29 4 ∗ 30 \lambda^2=\frac{29}{4*30} λ 2 = 4 ∗ 30 29 =29 120 \frac{29}{120} 120 29
λ = 29 120 = \lambda=\sqrt{\frac{29}{120}}= λ = 120 29 = 0.4916
λ = 0.4916 , x = 1 2 λ = 1.0171 , y = − 1 λ = − 2.0342 , z = 5 2 λ = 5.0854 \lambda=0.4916, x=\frac{1}{2\lambda}=1.0171,y=\frac{-1}{\lambda}=-2.0342,z=\frac{5}{2\lambda}=5.0854 λ = 0.4916 , x = 2 λ 1 = 1.0171 , y = λ − 1 = − 2.0342 , z = 2 λ 5 = 5.0854
T ( 1.0171 , − 2.0342 , 5.0854 ) = ( 1.0171 − 2 ( − 2.0342 ) + 5 ( 5.0854 ) T(1.0171,-2.0342,5.0854)=(1.0171-2(-2.0342)+5(5.0854) T ( 1.0171 , − 2.0342 , 5.0854 ) = ( 1.0171 − 2 ( − 2.0342 ) + 5 ( 5.0854 )
=30.5125
Hottest point on the probe surface is (1.0171,-2.0342,5.0854)
Comments