Question #258052

Find 𝑑𝑦

𝑑π‘₯

in each case

(a) 𝑦 = π‘‘π‘Žπ‘›4(3π‘₯)

(3)

(b) π‘₯2𝑦2 + π‘₯𝑠𝑖𝑛𝑦 = 4 use implicit differentiation



1
Expert's answer
2021-10-29T04:54:56-0400

Let us find dydx\frac{dy}{dx} in each case

(a) 𝑦=tan⁑4(3π‘₯)𝑦 = \tan^4(3π‘₯)

(b) π‘₯2𝑦2+π‘₯sin⁑𝑦=4π‘₯^2𝑦^2 + π‘₯\sin𝑦 = 4 use implicit differentiation


(a) 𝑦′=4tan⁑3(3π‘₯)(tan⁑(3π‘₯))β€²=4tan⁑3(3π‘₯)1cos⁑2(3x)(3π‘₯)β€²=12tan⁑3(3π‘₯)cos⁑2(3x).𝑦' = 4\tan^3(3π‘₯)(\tan(3π‘₯))'= 4\tan^3(3π‘₯)\frac{1}{\cos^2 (3x)}(3π‘₯)'= 12\frac{\tan^3(3π‘₯)}{\cos^2 (3x)}.

(b) Let us use the implicit differentiation:

2x𝑦2+π‘₯22𝑦yβ€²+sin⁑𝑦+xyβ€²cos⁑y=0.2x𝑦^2 + π‘₯^22𝑦y' +\sin𝑦+xy'\cos y = 0.

Therefore, yβ€²(2π‘₯2y+xcos⁑y)=βˆ’2x𝑦2βˆ’sin⁑y,y'(2π‘₯^2y+x\cos y) = -2x𝑦^2 - \sin y, and hence

yβ€²=βˆ’2x𝑦2+sin⁑y2π‘₯2y+xcos⁑y.y' =- \frac{2x𝑦^2 +\sin y}{2π‘₯^2y+x\cos y}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS