Let us find dxdyβ in each case
(a) y=tan4(3x)
(b) x2y2+xsiny=4 use implicit differentiation
(a) yβ²=4tan3(3x)(tan(3x))β²=4tan3(3x)cos2(3x)1β(3x)β²=12cos2(3x)tan3(3x)β.
(b) Let us use the implicit differentiation:
2xy2+x22yyβ²+siny+xyβ²cosy=0.
Therefore, yβ²(2x2y+xcosy)=β2xy2βsiny, and hence
yβ²=β2x2y+xcosy2xy2+sinyβ.
Comments