find f(x) = x2 - 2x -2 find f' (x) using the long method
Let "f(x) = x^2 - 2x -2". Let us find "f' (x)" using the long method.
"f'(x)=\\lim\\limits_{\\Delta x\\to 0}\\frac{f(x+\\Delta x)-f(x)}{\\Delta x}\n\\\\=\\lim\\limits_{\\Delta x\\to 0}\\frac{(x+\\Delta x)^2 - 2(x+\\Delta x) -2-(x^2 - 2x -2)}{\\Delta x}\n\\\\=\\lim\\limits_{\\Delta x\\to 0}\\frac{x^2+2x\\Delta x+(\\Delta x)^2 - 2x-2\\Delta x -2-x^2 +2x +2}{\\Delta x}\n\\\\=\\lim\\limits_{\\Delta x\\to 0}\\frac{2x\\Delta x+(\\Delta x)^2 -2\\Delta x }{\\Delta x}\n\\\\=\\lim\\limits_{\\Delta x\\to 0}(2x+\\Delta x -2 )\\\\=2x-2."
Comments
Leave a comment