Question #258022

find f(x) = x2 - 2x -2 find f' (x) using the long method


1
Expert's answer
2021-11-01T08:48:24-0400

Let f(x)=x22x2f(x) = x^2 - 2x -2. Let us find f(x)f' (x) using the long method.


f(x)=limΔx0f(x+Δx)f(x)Δx=limΔx0(x+Δx)22(x+Δx)2(x22x2)Δx=limΔx0x2+2xΔx+(Δx)22x2Δx2x2+2x+2Δx=limΔx02xΔx+(Δx)22ΔxΔx=limΔx0(2x+Δx2)=2x2.f'(x)=\lim\limits_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x} \\=\lim\limits_{\Delta x\to 0}\frac{(x+\Delta x)^2 - 2(x+\Delta x) -2-(x^2 - 2x -2)}{\Delta x} \\=\lim\limits_{\Delta x\to 0}\frac{x^2+2x\Delta x+(\Delta x)^2 - 2x-2\Delta x -2-x^2 +2x +2}{\Delta x} \\=\lim\limits_{\Delta x\to 0}\frac{2x\Delta x+(\Delta x)^2 -2\Delta x }{\Delta x} \\=\lim\limits_{\Delta x\to 0}(2x+\Delta x -2 )\\=2x-2.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS