Answer to Question #258023 in Calculus for Russell

Question #258023

find f(x) = x2 - 2x -2 find f' (x) using the long method


1
Expert's answer
2021-11-02T16:42:48-0400

f(x)=x22x2f(x)=limh0f(x+h)f(x)hwhere f(x+h)=(x+h)22(x+h)2 =x2+2xh+h22x2h2f(x+h)f(x)h=2x+h2limh0f(x+h)f(x)h=2x2\displaystyle f(x) = x^2 -2x -2\\ f'(x) = \lim _{h \to 0}\frac{|f(x+h)-f(x)|}{|h|} \\ \text{where $f(x+h) = (x+h)^2 -2(x+h) -2$ }\\ =x^2+2xh+h^2-2x-2h-2\\ \therefore \frac{f(x+h)-f(x)}{h}=2x+h-2\\ \therefore \lim_{h \to 0}\frac{|f(x+h)-f(x)|}{|h|}=2x-2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment