find f(x) = x2 - 2x -2 find f' (x) using the long method
f(x)=x2−2x−2f′(x)=limh→0∣f(x+h)−f(x)∣∣h∣where f(x+h)=(x+h)2−2(x+h)−2 =x2+2xh+h2−2x−2h−2∴f(x+h)−f(x)h=2x+h−2∴limh→0∣f(x+h)−f(x)∣∣h∣=2x−2\displaystyle f(x) = x^2 -2x -2\\ f'(x) = \lim _{h \to 0}\frac{|f(x+h)-f(x)|}{|h|} \\ \text{where $f(x+h) = (x+h)^2 -2(x+h) -2$ }\\ =x^2+2xh+h^2-2x-2h-2\\ \therefore \frac{f(x+h)-f(x)}{h}=2x+h-2\\ \therefore \lim_{h \to 0}\frac{|f(x+h)-f(x)|}{|h|}=2x-2f(x)=x2−2x−2f′(x)=h→0lim∣h∣∣f(x+h)−f(x)∣where f(x+h)=(x+h)2−2(x+h)−2 =x2+2xh+h2−2x−2h−2∴hf(x+h)−f(x)=2x+h−2∴h→0lim∣h∣∣f(x+h)−f(x)∣=2x−2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment