Question #258152

Let T = f(x, y) be the temperature at the point (r, y) on the circle r = cost, y-inf.0≤ t≤2 and suppose that


ar 8-4y 8y-42


. Find where the maximum and minimum temperatures on the circle occur by examining the derivatives dT> dt and dT/dt


r=4x^ 2 -4xy+4y^ 2 . . Suppose that Find the maximum and minimum values of T7 on the circle


1
Expert's answer
2021-11-25T23:26:48-0500

x(T)=8x4yy(T)=8y4xx=costy=sintx2+y2=1sin2(x)+cos2(x)=1g=x2+y2dg=2xi+2yj=+=λg+=(8x4y)i+(8y4x)jh=(8x4y)i+(8y4x)j+λ(2xi+2yj)h=08x4y+2xλ=0....(1)dy4x+2yλ=0.....(2)2xλ=4y8xλ=4y8x2x2xλ+8x=4yx(2λ+8)=4yx=4y2λ+8Aslo2yλ+8y=4xy(2λ+8)=4xy=4x2λ+8(4y2λ+8)2+(4x2λ+8)2=1(12λ+8)2(16y2+16x2)=1Thus(42λ+8)2=14(λ+4)2=14=(λ+4)2λ=2,λ=6When λ=2,x=yWhen λ=6,x=y    x=±12Maxima    x=12,y=12Manima    x=12,y=12MinT=4(12)24(12)(12)+4(12)=2MaxT=4(12)24(12)(12)+4(12)=6\frac{\partial }{\partial x}\left(T\right)=8x-4y\\ \frac{\partial }{\partial y}\left(T\right)=8y-4x\\ x = \cos t \\ y= \sin t\\ x^2+y^2=1\\ \sin ^2\left(x\right)+\cos ^2\left(x\right)=1\\ g = x^2 +y^2\\ d∇g = 2x i +2yj\\ =∇+= \lambda ∇ g \\ ∇+= (8x-4y)i + (8y -4x)j \\ ∇h= (8x-4y)i+(8y-4x)j + \lambda (2x i +2y j)\\ ∇h=0\\ 8 x-4y + 2x \lambda = 0....(1)\\ dy -4x + 2y \lambda = 0.....(2)\\ 2x λ=4y-8x\\ λ= \frac{4y-8x}{2x}\\ 2x λ+ 8x = 4y\\ x(2 λ+8)=4y\\ x= \frac{4y}{2λ+8}\\ Aslo\\ 2y λ+8y = 4x\\ y(2λ+8) =4x\\ y= \frac{4x}{2λ+8}\\ \left(\frac{4y}{2λ+8}\right)^2+\left(\frac{4x}{2λ+8}\right)^2=1\\ \left(\frac{1}{2λ+8}\right)^2\left(16y^2+16x^2\right)=1\\ Thus \\ \left(\frac{4}{2λ+8}\right)^2=1\\ \frac{4}{\left(λ+4\right)^2}=1\\ 4=\left(λ+4\right)^2\\ λ=-2,\:λ=-6\\ When \space λ= -2, x = y \\ When \space λ= -6, x = -y \\ \implies x = ± \frac{1}{\sqrt{2}}\\ Maxima \implies x = - \frac{1}{\sqrt{2}}, y = \frac{1}{\sqrt{2}}\\ Manima \implies x = \frac{1}{\sqrt{2}}, y = \frac{1}{\sqrt{2}}\\ Min_T= 4(\frac{1}{\sqrt{2}})^2-4(\frac{1}{\sqrt{2}})(\frac{1}{\sqrt{2}})+4(\frac{1}{\sqrt{2}})=2\\ Max_T= 4(-\frac{1}{\sqrt{2}})^2-4(\frac{1}{\sqrt{2}})(-\frac{1}{\sqrt{2}})+4(\frac{1}{\sqrt{2}})=6


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS