∂ ∂ x ( T ) = 8 x − 4 y ∂ ∂ y ( T ) = 8 y − 4 x x = cos t y = sin t x 2 + y 2 = 1 sin 2 ( x ) + cos 2 ( x ) = 1 g = x 2 + y 2 d ∇ g = 2 x i + 2 y j = ∇ + = λ ∇ g ∇ + = ( 8 x − 4 y ) i + ( 8 y − 4 x ) j ∇ h = ( 8 x − 4 y ) i + ( 8 y − 4 x ) j + λ ( 2 x i + 2 y j ) ∇ h = 0 8 x − 4 y + 2 x λ = 0.... ( 1 ) d y − 4 x + 2 y λ = 0..... ( 2 ) 2 x λ = 4 y − 8 x λ = 4 y − 8 x 2 x 2 x λ + 8 x = 4 y x ( 2 λ + 8 ) = 4 y x = 4 y 2 λ + 8 A s l o 2 y λ + 8 y = 4 x y ( 2 λ + 8 ) = 4 x y = 4 x 2 λ + 8 ( 4 y 2 λ + 8 ) 2 + ( 4 x 2 λ + 8 ) 2 = 1 ( 1 2 λ + 8 ) 2 ( 16 y 2 + 16 x 2 ) = 1 T h u s ( 4 2 λ + 8 ) 2 = 1 4 ( λ + 4 ) 2 = 1 4 = ( λ + 4 ) 2 λ = − 2 , λ = − 6 W h e n λ = − 2 , x = y W h e n λ = − 6 , x = − y ⟹ x = ± 1 2 M a x i m a ⟹ x = − 1 2 , y = 1 2 M a n i m a ⟹ x = 1 2 , y = 1 2 M i n T = 4 ( 1 2 ) 2 − 4 ( 1 2 ) ( 1 2 ) + 4 ( 1 2 ) = 2 M a x T = 4 ( − 1 2 ) 2 − 4 ( 1 2 ) ( − 1 2 ) + 4 ( 1 2 ) = 6 \frac{\partial }{\partial x}\left(T\right)=8x-4y\\
\frac{\partial }{\partial y}\left(T\right)=8y-4x\\
x = \cos t \\
y= \sin t\\
x^2+y^2=1\\
\sin ^2\left(x\right)+\cos ^2\left(x\right)=1\\
g = x^2 +y^2\\
d∇g = 2x i +2yj\\
=∇+= \lambda ∇ g \\
∇+= (8x-4y)i + (8y -4x)j \\
∇h= (8x-4y)i+(8y-4x)j + \lambda (2x i +2y j)\\
∇h=0\\
8 x-4y + 2x \lambda = 0....(1)\\
dy -4x + 2y \lambda = 0.....(2)\\
2x λ=4y-8x\\
λ= \frac{4y-8x}{2x}\\
2x λ+ 8x = 4y\\
x(2 λ+8)=4y\\
x= \frac{4y}{2λ+8}\\
Aslo\\
2y λ+8y = 4x\\
y(2λ+8) =4x\\
y= \frac{4x}{2λ+8}\\
\left(\frac{4y}{2λ+8}\right)^2+\left(\frac{4x}{2λ+8}\right)^2=1\\
\left(\frac{1}{2λ+8}\right)^2\left(16y^2+16x^2\right)=1\\
Thus \\
\left(\frac{4}{2λ+8}\right)^2=1\\
\frac{4}{\left(λ+4\right)^2}=1\\
4=\left(λ+4\right)^2\\
λ=-2,\:λ=-6\\
When \space λ= -2, x = y \\
When \space λ= -6, x = -y \\
\implies x = ± \frac{1}{\sqrt{2}}\\
Maxima \implies x = - \frac{1}{\sqrt{2}}, y = \frac{1}{\sqrt{2}}\\
Manima \implies x = \frac{1}{\sqrt{2}}, y = \frac{1}{\sqrt{2}}\\
Min_T= 4(\frac{1}{\sqrt{2}})^2-4(\frac{1}{\sqrt{2}})(\frac{1}{\sqrt{2}})+4(\frac{1}{\sqrt{2}})=2\\
Max_T= 4(-\frac{1}{\sqrt{2}})^2-4(\frac{1}{\sqrt{2}})(-\frac{1}{\sqrt{2}})+4(\frac{1}{\sqrt{2}})=6 ∂ x ∂ ( T ) = 8 x − 4 y ∂ y ∂ ( T ) = 8 y − 4 x x = cos t y = sin t x 2 + y 2 = 1 sin 2 ( x ) + cos 2 ( x ) = 1 g = x 2 + y 2 d ∇ g = 2 x i + 2 y j = ∇ + = λ ∇ g ∇ + = ( 8 x − 4 y ) i + ( 8 y − 4 x ) j ∇ h = ( 8 x − 4 y ) i + ( 8 y − 4 x ) j + λ ( 2 x i + 2 y j ) ∇ h = 0 8 x − 4 y + 2 x λ = 0.... ( 1 ) d y − 4 x + 2 y λ = 0..... ( 2 ) 2 x λ = 4 y − 8 x λ = 2 x 4 y − 8 x 2 x λ + 8 x = 4 y x ( 2 λ + 8 ) = 4 y x = 2 λ + 8 4 y A s l o 2 y λ + 8 y = 4 x y ( 2 λ + 8 ) = 4 x y = 2 λ + 8 4 x ( 2 λ + 8 4 y ) 2 + ( 2 λ + 8 4 x ) 2 = 1 ( 2 λ + 8 1 ) 2 ( 16 y 2 + 16 x 2 ) = 1 T h u s ( 2 λ + 8 4 ) 2 = 1 ( λ + 4 ) 2 4 = 1 4 = ( λ + 4 ) 2 λ = − 2 , λ = − 6 Wh e n λ = − 2 , x = y Wh e n λ = − 6 , x = − y ⟹ x = ± 2 1 M a x ima ⟹ x = − 2 1 , y = 2 1 M anima ⟹ x = 2 1 , y = 2 1 M i n T = 4 ( 2 1 ) 2 − 4 ( 2 1 ) ( 2 1 ) + 4 ( 2 1 ) = 2 M a x T = 4 ( − 2 1 ) 2 − 4 ( 2 1 ) ( − 2 1 ) + 4 ( 2 1 ) = 6
Comments