Determine the limits if they exist for the function lim (x,y)→(0,0) 1 − x − y /x 2 + y 2
The given function is
The repeated limit of "f(x,y)" are following
"\\lim_{x\\to 0} \\lim_{y\\to 0} f(x,y)=\\lim_{x\\to 0}(\\lim_{y\\to 0} f(x,y))"
"=\\lim_{x\\to 0}(\\lim_{y\\to 0} \\frac{(y-x)}{(y+x)}\u00d7\\frac{(1+x^2)}{(1+y^2)})"
"=\\lim_{x\\to 0} (-1) (1+x^2)"
"=-1."
Again, "lim_{y\\to 0}lim_{x\\to 0}f(x,y)=\\lim_{y\\to 0}(\\lim_{x\\to 0} f(x,y))"
"=\\lim_{y\\to0}(\\lim_{x\\to0} \\frac{(y-x)}{(y+x)}\u00d7\\frac{(1+x^2)}{(1+y^2)} )"
"=\\lim_{y\\to0}\\frac{1}{1+y^2}"
"=1"
Hence ,the repeated limits exist and unequal.
Now we have to find the simultaneous limit of "f(x,y)"
Let "(x,y)\\rightarrow(0,0)" along the line "y=mx" ,"m\\in\\R" then
Which is not unique as it takes different values for different values of "m" .
Hence the simultaneous limit does not exist.
Comments
Leave a comment