f ( x ) = x 4 − 4 x 2 + 7 f(x)=x^4-4x^2+7 f ( x ) = x 4 − 4 x 2 + 7 is continuous on [ − 1 , 1 ] [-1,1] [ − 1 , 1 ] as a polynomial.
f ( x ) = x 4 − 4 x 2 + 7 f(x)=x^4-4x^2+7 f ( x ) = x 4 − 4 x 2 + 7 is differentiable on ( − 1 , 1 ) (-1,1) ( − 1 , 1 ) as a polynomial.
f ( − 1 ) = ( − 1 ) 4 − 4 ( − 1 ) 2 + 7 = 4 f(-1)=(-1)^4-4(-1)^2+7=4 f ( − 1 ) = ( − 1 ) 4 − 4 ( − 1 ) 2 + 7 = 4
f ( 1 ) = ( 1 ) 4 − 4 ( 1 ) 2 + 7 = 4 f(1)=(1)^4-4(1)^2+7=4 f ( 1 ) = ( 1 ) 4 − 4 ( 1 ) 2 + 7 = 4
f ( − 1 ) = 4 = f ( 1 ) f(-1)=4=f(1) f ( − 1 ) = 4 = f ( 1 ) Since the function f ( x ) = x 4 − 4 x 2 + 7 f(x)=x^4-4x^2+7 f ( x ) = x 4 − 4 x 2 + 7 satisfies these conditions, then the function f ( x ) = x 4 − 4 x 2 + 7 f(x)=x^4-4x^2+7 f ( x ) = x 4 − 4 x 2 + 7 satisfies the Rolle's theorem.
Then ther is the number c c c in ( − 1 , 1 ) (-1, 1) ( − 1 , 1 ) such that f ′ ( c ) = 0. f'(c)=0. f ′ ( c ) = 0.
f ′ ( x ) = ( x 4 − 4 x 2 + 7 ) ′ = 4 x 3 − 8 x f'(x)=(x^4-4x^2+7)'=4x^3-8x f ′ ( x ) = ( x 4 − 4 x 2 + 7 ) ′ = 4 x 3 − 8 x
f ′ ( x ) = 0 = > 4 x 3 − 8 x = 0 f'(x)=0=>4x^3-8x=0 f ′ ( x ) = 0 => 4 x 3 − 8 x = 0
4 x ( x 2 − 2 ) = 0 4x(x^2-2)=0 4 x ( x 2 − 2 ) = 0
x 1 = 0 , x 2 = − 2 , x 3 = 2 x_1=0, x_2=-\sqrt{2}, x_3=\sqrt{2} x 1 = 0 , x 2 = − 2 , x 3 = 2 Since the function f ( x ) = x 4 − 4 x 2 + 7 f(x)=x^4-4x^2+7 f ( x ) = x 4 − 4 x 2 + 7 is defined on [ − 1 , 1 ] , [-1, 1], [ − 1 , 1 ] , then c = 0 c=0 c = 0 and
f ′ ( c ) = f ′ ( 0 ) = 0. f'(c)=f'(0)=0. f ′ ( c ) = f ′ ( 0 ) = 0.
Comments