Is the function f :[3, 4] ➡R defined by f(x) = x^2 -x is a monotonic in its domain
"f'(x)=(x^2-x)'=2x-1"
If "x\\in[3, 4]," then "f'(x)>0" and "f(x)" is (strictly) increasing on "[3, 4]."
Therefore the function "f(x)=x^2-x, x\\in [3,4]" is a monotonic in its domain.
Comments
Leave a comment