Is the function 𝑓:𝑹 →R defined as f:(x) = (x — 7) (x^3 + 11)is an odd function.
f(x)=(x−7)(x3+11)f(−x)=(−x−7)[(−x)3+11)]=−(x+7)(−x3+11)=−(x+7)(11−x3)≠−f(x)f(x) = (x - 7) (x^3 + 11) \\f(-x) = (-x-7)[(-x)^3+11)] \\=-(x+7)(-x^3+11) \\=-(x+7)(11-x^3)\neq-f(x)f(x)=(x−7)(x3+11)f(−x)=(−x−7)[(−x)3+11)]=−(x+7)(−x3+11)=−(x+7)(11−x3)=−f(x)
For f(x)f(x)f(x) to be an odd function: f(−x)=−f(x)f(-x)=-f(x)f(−x)=−f(x)
But, there is no relation between f(x)f(x)f(x) and f(−x)f(-x)f(−x) here in this problem.
So, f(x)f(x)f(x) is not an odd function.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments