Let P(t)= the size of population at time t.
(i) Form the differential equation involving 𝑃
dtdP=−k(P−1000),k>0 (ii)
P−1000dP=−kdt Integrate
∫P−1000dP=−∫kdt
ln(∣P−1000∣)=−kt+lnA
P−1000=Ae−kt
P(t)=1000+Ae−kt (iii)
Given P(0)=2500,P(10)=1900
2500=1000+Ae−k(0)=>A=1500
P(t)=1000+1500e−kt
1900=1000+1500e−k(10)
e10k=9001500
10k=ln(35)
k=0.1ln(35)
P(t)=1000+1500(53)0.1t In how many years will the population be 1500?
P(t1)=1000+1500(53)0.1t1=1500
(53)0.1t1=31
0.1t1=ln(5/3)ln3
t1=ln(5/3)10ln3
t1=21.5 years
(iv)
t→∞limP(t)=t→∞lim(1000+1500(53)0.1t)
=1000+1500t→∞lim((53)0.1t)=1000+1500(0)
=1000The size of population approaches to 1000 in the long term.
Comments