Solution:
(i)
I = β« ln β‘ x d x = β« 1 Γ ln β‘ x d x I=\int\ln x\ dx
\\=\int1\times\ln x\ dx I = β« ln x d x = β« 1 Γ ln x d x
Using integration by parts,
I = ln β‘ x β« 1 d x β β« ( d d x ln β‘ x β« 1 d x ) d x = ln β‘ x Γ x β β« ( 1 x Γ x ) d x = x ln β‘ x β x + C I=\ln x\int1\ dx-\int(\dfrac d{dx}\ln x\int1dx)dx
\\=\ln x \times x-\int(\dfrac 1{x}\times x)dx
\\=x\ln x -x+C I = ln x β« 1 d x β β« ( d x d β ln x β« 1 d x ) d x = ln x Γ x β β« ( x 1 β Γ x ) d x = x ln x β x + C
(ii)
I = β« e β x cos β‘ 2 x d x I=\int e^{-x}\cos 2x\ dx I = β« e β x cos 2 x d x ...(A)
Using integration by parts,
I = cos β‘ 2 x β« e β x d x β β« ( d d x cos β‘ 2 x β« e β x d x ) d x = cos β‘ 2 x Γ β e β x β β« ( β 2 sin β‘ 2 x Γ β e β x ) d x = β e β x cos β‘ 2 x β 2 β« ( sin β‘ 2 x Γ e β x ) d x I=\cos 2x\int e^{-x} dx-\int(\dfrac d{dx}\cos 2x \int e^{-x}dx)dx
\\=\cos 2x \times- e^{-x} -\int(-2\sin 2x \times-e^{-x})dx
\\=- e^{-x}\cos 2x -2\int(\sin 2x \times e^{-x})dx I = cos 2 x β« e β x d x β β« ( d x d β cos 2 x β« e β x d x ) d x = cos 2 x Γ β e β x β β« ( β 2 sin 2 x Γ β e β x ) d x = β e β x cos 2 x β 2 β« ( sin 2 x Γ e β x ) d x
Again, using integration by parts,
I = β e β x cos β‘ 2 x β 2 [ sin β‘ 2 x β« e β x d x β β« ( d d x sin β‘ 2 x Γ β« e β x d x ) d x ] I=- e^{-x}\cos 2x -2[\sin 2x \int e^{-x}dx-\int(\dfrac d{dx}\sin 2x \times \int e^{-x}dx)dx] I = β e β x cos 2 x β 2 [ sin 2 x β« e β x d x β β« ( d x d β sin 2 x Γ β« e β x d x ) d x ]
= β e β x cos β‘ 2 x β 2 [ β e β x sin β‘ 2 x β β« ( 2 cos β‘ 2 x Γ β e β x ) d x ] = β e β x cos β‘ 2 x + 2 e β x sin β‘ 2 x β 4 β« ( cos β‘ 2 x Γ e β x ) d x =- e^{-x}\cos 2x -2[-e^{-x}\sin 2x -\int(2\cos 2x \times - e^{-x})dx]
\\=- e^{-x}\cos 2x +2e^{-x}\sin 2x -4\int(\cos 2x \times e^{-x})dx = β e β x cos 2 x β 2 [ β e β x sin 2 x β β« ( 2 cos 2 x Γ β e β x ) d x ] = β e β x cos 2 x + 2 e β x sin 2 x β 4 β« ( cos 2 x Γ e β x ) d x
I = β e β x cos β‘ 2 x + 2 e β x sin β‘ 2 x β 4 I + C I=- e^{-x}\cos 2x +2e^{-x}\sin 2x -4I+C I = β e β x cos 2 x + 2 e β x sin 2 x β 4 I + C [Using (A)]
5 I = β e β x cos β‘ 2 x + 2 e β x sin β‘ 2 x + C β I = 1 5 ( 2 e β x sin β‘ 2 x β e β x cos β‘ 2 x + C ) 5I=- e^{-x}\cos 2x +2e^{-x}\sin 2x +C
\\\Rightarrow I=\dfrac15(2e^{-x}\sin 2x- e^{-x}\cos 2x +C) 5 I = β e β x cos 2 x + 2 e β x sin 2 x + C β I = 5 1 β ( 2 e β x sin 2 x β e β x cos 2 x + C )
(iii)
I = β« sin β‘ β 1 x d x = β« 1 Γ sin β‘ β 1 x d x I=\int \sin^{-1}x \ dx
\\=\int 1\times \sin^{-1}x \ dx I = β« sin β 1 x d x = β« 1 Γ sin β 1 x d x
Using integration by parts,
I = sin β‘ β 1 x Γ β« 1 d x β β« ( d d x sin β‘ β 1 x β« 1 d x ) d x = sin β‘ β 1 x Γ x β β« ( 1 1 β x 2 Γ x ) d x I=\sin^{-1}x\times\int 1 \ dx-\int(\dfrac d{dx}\sin^{-1}x\int1 dx)dx
\\=\sin^{-1}x\times x-\int(\dfrac 1{\sqrt{1-x^2}}\times x)dx I = sin β 1 x Γ β« 1 d x β β« ( d x d β sin β 1 x β« 1 d x ) d x = sin β 1 x Γ x β β« ( 1 β x 2 β 1 β Γ x ) d x
= x sin β‘ β 1 x β 1 2 β« 2 x 1 β x 2 d x = x sin β‘ β 1 x β 1 2 I 1 + C =x\sin^{-1}x-\dfrac12\int\dfrac {2x}{\sqrt{1-x^2}}dx
\\=x\sin^{-1}x-\dfrac12I_1+C = x sin β 1 x β 2 1 β β« 1 β x 2 β 2 x β d x = x sin β 1 x β 2 1 β I 1 β + C
Now, I 1 = β« 2 x 1 β x 2 d x I_1=\int\dfrac {2x}{\sqrt{1-x^2}}dx I 1 β = β« 1 β x 2 β 2 x β d x
Put 1 β x 2 = t 1-x^2=t 1 β x 2 = t
β 2 x d x = β d t \Rightarrow 2xdx=-dt β 2 x d x = β d t
So, we get,
I 1 = β β« 1 t d t = β β« t β 1 / 2 d t = β t 1 / 2 1 / 2 = β 2 t = β 2 1 β x 2 I_1=-\int\dfrac {1}{\sqrt{t}}dt=-\int t^{-1/2} dt=-\dfrac{t^{1/2}}{1/2}=-2\sqrt t=-2\sqrt{1-x^2} I 1 β = β β« t β 1 β d t = β β« t β 1/2 d t = β 1/2 t 1/2 β = β 2 t β = β 2 1 β x 2 β
Thus, I = x sin β‘ β 1 x β 1 2 ( β 2 1 β x 2 ) + C I=x\sin^{-1}x-\dfrac12(-2\sqrt{1-x^2})+C I = x sin β 1 x β 2 1 β ( β 2 1 β x 2 β ) + C
β I = x sin β‘ β 1 x + 1 β x 2 + C \Rightarrow I=x\sin^{-1}x+\sqrt{1-x^2}+C β I = x sin β 1 x + 1 β x 2 β + C
Comments