Question #247647

Find (i) ∫ ln π‘₯ 𝑑π‘₯, (ii) ∫ 𝑒 βˆ’π‘₯ cos 2π‘₯ 𝑑π‘₯. Hint: Let 𝐼 = ∫ 𝑒 π‘₯ cos 2π‘₯ 𝑑π‘₯ and use parts twice, (iii) sinβˆ’1 π‘₯ 𝑑π‘₯.


1
Expert's answer
2021-10-19T10:43:30-0400

Solution:

(i)

I=∫ln⁑x dx=∫1Γ—ln⁑x dxI=\int\ln x\ dx \\=\int1\times\ln x\ dx

Using integration by parts,

I=ln⁑x∫1 dxβˆ’βˆ«(ddxln⁑x∫1dx)dx=ln⁑xΓ—xβˆ’βˆ«(1xΓ—x)dx=xln⁑xβˆ’x+CI=\ln x\int1\ dx-\int(\dfrac d{dx}\ln x\int1dx)dx \\=\ln x \times x-\int(\dfrac 1{x}\times x)dx \\=x\ln x -x+C

(ii)

I=∫eβˆ’xcos⁑2x dxI=\int e^{-x}\cos 2x\ dx ...(A)

Using integration by parts,

I=cos⁑2x∫eβˆ’xdxβˆ’βˆ«(ddxcos⁑2x∫eβˆ’xdx)dx=cos⁑2xΓ—βˆ’eβˆ’xβˆ’βˆ«(βˆ’2sin⁑2xΓ—βˆ’eβˆ’x)dx=βˆ’eβˆ’xcos⁑2xβˆ’2∫(sin⁑2xΓ—eβˆ’x)dxI=\cos 2x\int e^{-x} dx-\int(\dfrac d{dx}\cos 2x \int e^{-x}dx)dx \\=\cos 2x \times- e^{-x} -\int(-2\sin 2x \times-e^{-x})dx \\=- e^{-x}\cos 2x -2\int(\sin 2x \times e^{-x})dx

Again, using integration by parts,

I=βˆ’eβˆ’xcos⁑2xβˆ’2[sin⁑2x∫eβˆ’xdxβˆ’βˆ«(ddxsin⁑2xΓ—βˆ«eβˆ’xdx)dx]I=- e^{-x}\cos 2x -2[\sin 2x \int e^{-x}dx-\int(\dfrac d{dx}\sin 2x \times \int e^{-x}dx)dx]

=βˆ’eβˆ’xcos⁑2xβˆ’2[βˆ’eβˆ’xsin⁑2xβˆ’βˆ«(2cos⁑2xΓ—βˆ’eβˆ’x)dx]=βˆ’eβˆ’xcos⁑2x+2eβˆ’xsin⁑2xβˆ’4∫(cos⁑2xΓ—eβˆ’x)dx=- e^{-x}\cos 2x -2[-e^{-x}\sin 2x -\int(2\cos 2x \times - e^{-x})dx] \\=- e^{-x}\cos 2x +2e^{-x}\sin 2x -4\int(\cos 2x \times e^{-x})dx

I=βˆ’eβˆ’xcos⁑2x+2eβˆ’xsin⁑2xβˆ’4I+CI=- e^{-x}\cos 2x +2e^{-x}\sin 2x -4I+C [Using (A)]

5I=βˆ’eβˆ’xcos⁑2x+2eβˆ’xsin⁑2x+Cβ‡’I=15(2eβˆ’xsin⁑2xβˆ’eβˆ’xcos⁑2x+C)5I=- e^{-x}\cos 2x +2e^{-x}\sin 2x +C \\\Rightarrow I=\dfrac15(2e^{-x}\sin 2x- e^{-x}\cos 2x +C)

(iii)

I=∫sinβ‘βˆ’1x dx=∫1Γ—sinβ‘βˆ’1x dxI=\int \sin^{-1}x \ dx \\=\int 1\times \sin^{-1}x \ dx

Using integration by parts,

I=sinβ‘βˆ’1xΓ—βˆ«1 dxβˆ’βˆ«(ddxsinβ‘βˆ’1x∫1dx)dx=sinβ‘βˆ’1xΓ—xβˆ’βˆ«(11βˆ’x2Γ—x)dxI=\sin^{-1}x\times\int 1 \ dx-\int(\dfrac d{dx}\sin^{-1}x\int1 dx)dx \\=\sin^{-1}x\times x-\int(\dfrac 1{\sqrt{1-x^2}}\times x)dx

=xsinβ‘βˆ’1xβˆ’12∫2x1βˆ’x2dx=xsinβ‘βˆ’1xβˆ’12I1+C=x\sin^{-1}x-\dfrac12\int\dfrac {2x}{\sqrt{1-x^2}}dx \\=x\sin^{-1}x-\dfrac12I_1+C

Now, I1=∫2x1βˆ’x2dxI_1=\int\dfrac {2x}{\sqrt{1-x^2}}dx

Put 1βˆ’x2=t1-x^2=t

β‡’2xdx=βˆ’dt\Rightarrow 2xdx=-dt

So, we get,

I1=βˆ’βˆ«1tdt=βˆ’βˆ«tβˆ’1/2dt=βˆ’t1/21/2=βˆ’2t=βˆ’21βˆ’x2I_1=-\int\dfrac {1}{\sqrt{t}}dt=-\int t^{-1/2} dt=-\dfrac{t^{1/2}}{1/2}=-2\sqrt t=-2\sqrt{1-x^2}

Thus, I=xsinβ‘βˆ’1xβˆ’12(βˆ’21βˆ’x2)+CI=x\sin^{-1}x-\dfrac12(-2\sqrt{1-x^2})+C

β‡’I=xsinβ‘βˆ’1x+1βˆ’x2+C\Rightarrow I=x\sin^{-1}x+\sqrt{1-x^2}+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS