Question 1 Find (i) β« ππ₯ π₯(ln π₯)2, (ii) β« π₯βπ₯ + 1 ππ₯, (iii) β« π₯(π₯ 2 + 3) 4ππ₯ 1 0 , (iv) cos2 π₯ sin3 π₯ ππ₯. Try π‘ = sin x
"\\displaystyle\n2\\int x\\ln x \\\\\n\\text{Using integration by parts, we evaluate the above integral}\\\\\n\\text{Let $u = \\ln x, dv = x$ }\\implies du = \\frac{1}{x}, v = \\frac{x^2}{2}\\\\\n\\int udv = uv -\\int vdu\\\\\n\\implies 2\\int x\\ln x = 2(\\frac{x^2}{2}\\ln x - \\frac{x^2}{4}+c)\\\\\nx^2\\ln x - \\frac{x^2}{2}+c\\\\\n\\int (x\\sqrt{x}+1)dx = \\int (x^{\\frac{3}{2}}+1)dx\\\\\n= \\frac{2x^{\\frac{5}{2}}}{5}+x+c\\\\\n\\int x(x^2+3)4dx= \\int (4x^3 +12x)dx\\\\\nx^4+6x^2+c\\\\\n\\int \\cos 2x \\sin 3x dx\\\\\n\\sin A \\cos B = \\frac{1}{2}(\\sin 5x + \\sin x)dx\\\\\n\\therefore \\int \\cos 2x \\sin 3x dx = \\frac{1}{2}\\int \\sin 5xdx +\\frac{1}{2} \\int \\sin xdx\\\\\n=-\\frac{1}{10}\\cos5x-\\frac{1}{2}\\cos x+c"
Comments
Leave a comment