Question #247208

Given the function f(x,y)= arctan(xy) (A) Find the gradient vector f(x,y) (B) Compute the directional derivative of f at the point (1,2) in the direction of the vector

v = 5i + 10j


1
Expert's answer
2021-10-12T10:10:31-0400

f(x,y)=arctan(xy)f(x,y)x=y1+(xy)2,f(x,y)x=25f(x,y)y=x1+(xy)2,f(x,y)x=15Next, we find the unit vector of the given directionu=5i+10j125=5i+10j55the directional derivative is given by f(x)u=3525\displaystyle f(x,y) = arc\tan(xy)\\ \frac{\partial f(x,y)}{\partial x}=\frac{y}{1+(xy)^2}, \qquad \frac{\partial f(x,y)}{\partial x}=\frac{2}{5}\\ \frac{\partial f(x,y)}{\partial y}=\frac{x}{1+(xy)^2}, \qquad \frac{\partial f(x,y)}{\partial x}=\frac{1}{5}\\ \text{Next, we find the unit vector of the given direction}\\ u=\frac{5i+10j}{\sqrt{125}}= \frac{5i+10j}{5\sqrt{5}}\\ \text{the directional derivative is given by $\nabla f(x)\cdot u$}\\ = \frac{3\sqrt{5}}{25}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS