Solution:
y=x3 ...(i)x=y2 ...(ii)
Put (ii) in (i)
y=(y2)3⇒y=y6⇒y−y6=0⇒y(1−y5)=0⇒y=0,y=1
When y=0,x=0
When y=1,x=1
So, the points of intersection are (0,0), (1,1).
Now, for (0,0):
y=x3⇒y′=3x2⇒y′(0,0)=3(0)=0=m1
x=y2⇒y2=x⇒2y.y′=1⇒y′=2y1⇒y′(0,0)=01=∞=m2
Now, tanθ=∣1+m1m2m1−m2∣=∣1+0.∞0−∞∣=∞=not defined
Thus, rejecting this case.
Next, for (1,1):
y=x3⇒y′=3x2⇒y′(1,1)=3(1)2=3=m1
x=y2⇒y2=x⇒2y.y′=1⇒y′=2y1⇒y′(1,1)=2(1)1=21=m2
Now, tanθ=∣1+m1m2m1−m2∣=∣1+3×213−21∣=1
So, θ=45°
Comments