Question #246836

Find acute angle between intersecting curves. Write normal line, tangent line for each curves at the intersec tion point.


y = x ^ 3 , x = y ^ 2


1
Expert's answer
2021-10-18T15:13:41-0400

Solution:

y=x3 ...(i)x=y2 ...(ii)y=x^3\ ...(i) \\x=y^2\ ...(ii)

Put (ii) in (i)

y=(y2)3y=y6yy6=0y(1y5)=0y=0,y=1y=(y^2)^3 \\ \Rightarrow y=y^6 \\ \Rightarrow y-y^6=0 \\ \Rightarrow y(1-y^5)=0 \\ \Rightarrow y=0, y=1

When y=0,x=0y=0,x=0

When y=1,x=1y=1,x=1

So, the points of intersection are (0,0), (1,1).

Now, for (0,0):

y=x3y=3x2y(0,0)=3(0)=0=m1y=x^3 \\ \Rightarrow y'=3x^2 \\ \Rightarrow y'(0,0)=3(0)=0=m_1

x=y2y2=x2y.y=1y=12yy(0,0)=10==m2x=y^2 \\\Rightarrow y^2=x \\\Rightarrow 2y.y'=1 \\\Rightarrow y'=\dfrac1{2y} \\\Rightarrow y'(0,0)=\dfrac10=\infty=m_2

Now, tanθ=m1m21+m1m2=01+0.==not defined\tan \theta=|\dfrac{m_1-m_2}{1+m_1m_2}|=|\dfrac{0-\infty}{1+0.\infty}|=\infty=not\ defined

Thus, rejecting this case.

Next, for (1,1):

y=x3y=3x2y(1,1)=3(1)2=3=m1y=x^3 \\ \Rightarrow y'=3x^2 \\ \Rightarrow y'(1,1)=3(1)^2=3=m_1

x=y2y2=x2y.y=1y=12yy(1,1)=12(1)=12=m2x=y^2 \\\Rightarrow y^2=x \\\Rightarrow 2y.y'=1 \\\Rightarrow y'=\dfrac1{2y} \\\Rightarrow y'(1,1)=\dfrac1{2(1)}=\dfrac12=m_2

Now, tanθ=m1m21+m1m2=3121+3×12=1\tan \theta=|\dfrac{m_1-m_2}{1+m_1m_2}|=|\dfrac{3-\dfrac12}{1+3\times\dfrac12}|=1

So, θ=45°\theta=45\degree


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS