Find acute angle between intersecting curves. Write normal line, tangent line for each curves at the intersec tion point.
y = x ^ 3 , x = y ^ 2
Solution:
"y=x^3\\ ...(i)\n\\\\x=y^2\\ ...(ii)"
Put (ii) in (i)
"y=(y^2)^3\n\\\\ \\Rightarrow y=y^6\n\\\\ \\Rightarrow y-y^6=0\n\\\\ \\Rightarrow y(1-y^5)=0\n\\\\ \\Rightarrow y=0, y=1"
When "y=0,x=0"
When "y=1,x=1"
So, the points of intersection are (0,0), (1,1).
Now, for (0,0):
"y=x^3\n\\\\ \\Rightarrow y'=3x^2\n\\\\ \\Rightarrow y'(0,0)=3(0)=0=m_1"
"x=y^2\n\\\\\\Rightarrow y^2=x\n\\\\\\Rightarrow 2y.y'=1\n\\\\\\Rightarrow y'=\\dfrac1{2y}\n\\\\\\Rightarrow y'(0,0)=\\dfrac10=\\infty=m_2"
Now, "\\tan \\theta=|\\dfrac{m_1-m_2}{1+m_1m_2}|=|\\dfrac{0-\\infty}{1+0.\\infty}|=\\infty=not\\ defined"
Thus, rejecting this case.
Next, for (1,1):
"y=x^3\n\\\\ \\Rightarrow y'=3x^2\n\\\\ \\Rightarrow y'(1,1)=3(1)^2=3=m_1"
"x=y^2\n\\\\\\Rightarrow y^2=x\n\\\\\\Rightarrow 2y.y'=1\n\\\\\\Rightarrow y'=\\dfrac1{2y}\n\\\\\\Rightarrow y'(1,1)=\\dfrac1{2(1)}=\\dfrac12=m_2"
Now, "\\tan \\theta=|\\dfrac{m_1-m_2}{1+m_1m_2}|=|\\dfrac{3-\\dfrac12}{1+3\\times\\dfrac12}|=1"
So, "\\theta=45\\degree"
Comments
Leave a comment