The perimeter of an isosceles triangle is 28cm. What is the maximum area possible?
Let b be the length of the base, and a the length of each of the two equal legs.
Triangle area:
S=ba2−b2/42S=\frac{b\sqrt{a^2-b^2/4}}{2}S=2ba2−b2/4
b=28−2ab=28-2ab=28−2a
S=(14−a)28a−196S=(14-a)\sqrt{28a-196}S=(14−a)28a−196
S′(a)=−28a−196+14(14−a)28a−196=0S'(a)=-\sqrt{28a-196}+\frac{14(14-a)}{\sqrt{28a-196}}=0S′(a)=−28a−196+28a−19614(14−a)=0
−28a+196+196−14a=0-28a+196+196-14a=0−28a+196+196−14a=0
a=28/3a=28/3a=28/3 cm
b=28−56/3=28/3b=28-56/3=28/3b=28−56/3=28/3
Smax=28784/9−784/366=19639S_{max}=\frac{28\sqrt{784/9-784/36}}{6}=\frac{196\sqrt{3}}{9}Smax=628784/9−784/36=91963
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments