The perimeter of an isosceles triangle is 28cm. What is the maximum area possible?
Let b be the length of the base, and a the length of each of the two equal legs.
Triangle area:
"S=\\frac{b\\sqrt{a^2-b^2\/4}}{2}"
"b=28-2a"
"S=(14-a)\\sqrt{28a-196}"
"S'(a)=-\\sqrt{28a-196}+\\frac{14(14-a)}{\\sqrt{28a-196}}=0"
"-28a+196+196-14a=0"
"a=28\/3" cm
"b=28-56\/3=28\/3"
"S_{max}=\\frac{28\\sqrt{784\/9-784\/36}}{6}=\\frac{196\\sqrt{3}}{9}"
Comments
Leave a comment