Question #247307

Given the function f(x,y) = e^x ( x^2 - y^2) find all critical points and classify each as a local maximum, local minimum, or neither.


1
Expert's answer
2021-10-06T17:44:44-0400

Solution.

Find the partial derivatives:

fx=2xex+(x2y2)ex,\frac{\partial f}{\partial x}=2xe^x+(x^2-y^2)e^x,

fy=2yex.\frac{\partial f}{\partial y}=-2ye^x.

Let's solve the system of equations2xex+(x2y2)ex=0,2yex=0.2xe^x+(x^2-y^2)e^x=0,\newline -2ye^x=0.

From the second equation y=0.y=0. Substitute y=0y=0 in the first equation of the system and find x:

(2x+x2)ex=0,2x+x2=0,x(2+x)=0,x1=0,x2=2.(2x+x^2)e^x=0,\newline 2x+x^2=0,\newline x(2+x)=0,\newline x_1=0, x_2=-2.

So we have two critical points (0,0) and (-2,0).

Find the partial derivatives of the second order:

B=2fxy=2yex,B=\frac{\partial ^2f}{\partial x\partial y}=-2ye^x,

A=2fx2=4xex+(x2y2)ex+2ex,A=\frac{\partial ^2f}{\partial x^2}=4xe^x+(x^2-y^2)e^x+2e^x,

C=2fy2=2ex.C=\frac{\partial ^2f}{\partial y^2}=-2e^x.

Let us calculate the value of these second-order partial derivatives at the critical points.

Calculate the values ​​for point (0; 0):

A=2,B=0,C=2.A=2, B=0, C=-2.

Calculate AC - B 2 = -4 <0, then there is no global extremum.

Calculate the values ​​for point (-2; 0):

A=2e2,B=0,C=2e2.A=-\frac{2}{e^2},B=0, C=-\frac{2}{e^2}.

Calculate AC - B 2 = 4 / e 4 > 0 and A <0, then at the point (-2; 0) there is a local maximum and fmaxf_{max} (-2; 0) = 4 / e 2


Answer. Two critical points (0,0) and (-2,0). Point (-2,0) is a point of local maximum.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS