Question #247495
Use Implicit differentiation to find the slope of the tangent line of the curve (x^2+y^2)^5 = ((x^2-y^2)^2 - 4x^2y^2)^2 at the point ( √2/2 , √2/2 ).
1
Expert's answer
2022-02-07T16:43:12-0500

The expression given is:(x2+y2)5=((x2y2)24x2y2)2We differentiate:(x2+y2)5/2=(x2y2)24x2y2As a result from the latter we have:5(x2+y2)3/2(x+yy)=4(x2y2)(xyy)8xy(y+xy)\text{The expression given is:} \to (x^2+y^2)^5 = ((x^2-y^2)^2 - 4x^2y^2)^2 \\ \text{We differentiate:} \to (x^2+y^2)^{5/2} = (x^2-y^2)^2 - 4x^2y^2 \\ \text{As a result from the latter we have:} \\ 5(x^2+y^2)^{3/2} (x+y\cdot y') = 4(x^2-y^2)(x-y\cdot y') - 8xy(y+x\cdot y')


We substitute the point P (√2/2 , √2/2) to find y:5((22)2+(22)2)3/2(22+(22)y)=4((22)2(22)2)(22(22)y)8(22)(22)(22+(22)y)5(12+12)3/2(22)(1+y)=4(1212)(22)(1y)8(12)(22)(1+y)5(1)3/2(22)(1+y)=8(12)(22)(1+y)5(1+y)=4(1+y)5+5y=44y5+4=9=5y4y=9yy=99=1\\ \text{We substitute the point P (√2/2 , √2/2) to find y}': \\ 5((\frac{\sqrt{2}}{2})^2+(\frac{\sqrt{2}}{2})^2)^{3/2} (\frac{\sqrt{2}}{2}+(\frac{\sqrt{2}}{2})\cdot y') = 4((\frac{\sqrt{2}}{2})^2-(\frac{\sqrt{2}}{2})^2)(\frac{\sqrt{2}}{2}-(\frac{\sqrt{2}}{2})\cdot y') - 8(\frac{\sqrt{2}}{2})(\frac{\sqrt{2}}{2})(\frac{\sqrt{2}}{2}+(\frac{\sqrt{2}}{2})\cdot y') \\ \to 5(\frac{1}{2}+\frac{1}{2})^{3/2}(\frac{\sqrt{2}}{2})\cdot (1+ y') = 4(\frac{1}{2}-\frac{1}{2})(\frac{\sqrt{2}}{2})\cdot(1- y') - 8(\frac{1}{2})(\frac{\sqrt{2}}{2})\cdot (1+y') \\ \to 5(1)^{3/2}\cancel{(\frac{\sqrt{2}}{2})}\cdot (1+ y') =- 8(\frac{1}{2})\cancel{(\frac{\sqrt{2}}{2})}\cdot (1+y') \\ \to 5\cdot (1+ y') =- 4\cdot (1+y') \\ \to 5+5\cdot y' =- 4- 4\cdot y' \\ \to 5+4 = 9 =-5\cdot y' - 4\cdot y' = -9\cdot y' \to y' = \frac{9}{-9}=-1


In conclusion, the slope of the curve tangent to the line at the point P(½,½) is y'= -1.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS